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For my mother and father 



Small But Necessary Foreword 

U
nfortunately this is a Foreword you actually have to 
read-and first-in order to understand certain 
structural idiosyncrasies and bits of what almost 

look like code in the main text. Of the latter the most fre
quent is a boldface 'IYI'. This, be apprised, is not a tic or typo 
but instead stands for the clause If you're interested, which 
was getting used over and over so many times in early drafts 
that what eventually happened is that through sheer repeti
tion it evolved from a natural-language phrase for introduc
ing some clause into an abstract extratextual sign-M-that 
now serves to classify certain chunks of text in a particular 
way. Which way will now be justified and explained. 

Like the other booklets in this 'Great Discoveries' series, 
Everything and More is a piece of pop technical writing. 
Its subject is a set of mathematical achievements that are 
extremely abstract and technical, but also extremely pro
found and interesting, and beautiful. The aim is to discuss 
these achievements in such a way that they're vivid and 
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comprehensible to readers who do not have pro-grade techni
cal backgrounds and expertise. To make the math beautiful
or at least to get the reader to see how someone might find it 
so. Which of course all sounds very nice, except there's a 
hitch: just how technical can the presentation get without 
either losing the reader or burying her in endless little defini
tions and explanatory asides? Plus if you assume, as seems 
plausible, that some readers are going to have much stronger 
tech backgrounds than others, how can the discussion be 
pitched so that it's accessible to the neophyte without being 
dull or annoying to somebody who's had a lot of college math? 

In the following document, the boldface 'M' designates bits 
of material that can be perused, glanced at, or skipped alto
gether if the reader wants. Meaning skipped without serious 
loss. Over half the document's footnotes are probably m, as 
well as several different 1 s and even a couple subsections of 
the main text. Some of the optional bits are digressions or 
bits of historical ephemera1

; some are definitions or explana
tions that a math-savvy reader won't need to waste time on. 
Most M-grade chunks, though, are designed for readers 
with strong technical backgrounds, or unusual interest in 
actual math, or preternatural patience, or all three; they (the 

1 M Here's a good example of an M factoid. Your author here is 
someone with a medium-strong amateur interest in math and formal sys
tems. He is also someone who disliked and did poorly in every math 

course he ever took, save one, which wasn't even in college, but which was 
taught by one of those rare specialists who can make the abstract alive and 
urgent, and who actually really talks to you when he's lecturing, and of 

whom anything that's good about this booklet is a pale and well-meant 
imitation. 
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chunks) provide a more detailed look at stuff that the main 
discussion glosses or breezes through. 

There are other abbreviations in the booklet, too. Some are 
just to save space. Others are the consequence of a strange 
stylistic problem in tech writing, which is that the same 
words often have to get used over and over in a way that 
would be terribly clunky in regular prose-the thing is that 
some technical words have highly specific denotations that no 
synonym can capture. Which means that, especially respect
ing certain high-tech proper nouns, abbreviation is the only 
way to achieve any kind of variation at all. None of that is 
really your problem. All the booklet's abbreviations are con
textualized in such a way that it ought to be totally clear what 
they stand for; but in case of authorial foul-ups or unneces
sary confusion, here is a list of the main ones, which can be 
flipped back and ref erred to if necessary: 

I-IC 
A.C. 
A.S.T. 
ATH 
B.T. 

=One-to-One Correspondence 
= Axiom of Choice 
= Axiomatic Set Theory 
= Fourier's Analytic Theory of Heat 

= Binomial Theorem 
B.W.T. = Bolzano-Weierstrass Theorem 
"C. and LR."= Dedekind's "Continuity and Irrational 

Numbers" 
C.H. 
C.P. 
D.B.P. 
D.E. 

D.P. 
E.G. 

= Continuum Hypothesis 
= Cartesian Product 
= Divine Brotherhood of Pythagoras 
= Differential Equation 
= Diagonal Proof 
= EMERGENCY GLOSSARY 
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E.V.T. =Weierstrass's Extreme Values Theorem 
F.T.C. = Fundamental Theorem of the Calculus 
G.C.P.F.S. = General Convergence Problem of Fourier 

Series 
L.A.P. = Limited Abstraction Principle 
LEM = Law of the Excluded Middle 
N.&L. = Newton and Leibniz 
N.L. = Number Line 
N.S.T. = Naive Set Theory 
0.0.M. =Plato's One Over Many argument 
P.I. = Principle oflnduction 
P of the I = Bolzano's Paradoxes of the Infinite 
P.S.A. = Power Set Axiom 
P.T. = Pythagorean Theorem 
R.L. =Real Line 
TNS = Galileo's Two New Sciences 
U.A.P. = Unlimited Abstraction Principle 
U.T. = Uniqueness Theorem 
VC = Vicious Circle 
VIR = Vicious Infinite Regress 
VNB =Von Neumann-Bernays system of axioms 

for set theory 
V.S.P. = Vibrating String Problem 
W.E. =Wave Equation 
ZFS = Zermelo-Fraenkel-Skolem system of 

axioms for set theory 
Z.P. =Zeno's Paradox 
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§la. There is such a thing as an historian of mathe
matics. Here is a nice opening-type quotation from one such 

historian in the 1930s: 

One conclusion appears to be inescapable: without a con
sistent theory of the mathematical infinite there is no 
theory of irrationals; without a theory of irrationals there 
is no mathematical analysis in any form even remotely 
resembling what we now have; and finally, without analy
sis the major part of mathematics-including geometry 
and most of applied mathematics-as it now exists would 
cease to exist. The most important task confronting math
ematicians would therefore seem to be the construction of 
a satisfactory theory of the infinite. Cantor attempted this, 
with what success will be seen later. 

The sexy math terms don't matter for now. The Cantor of the 
last line is Prof. Georg F. L. P. Cantor, b. 1845, a naturalized 
German of the merchant class and the acknowledged father 
of abstract set theory and transfinite math. Some historians 
have argued back and forth about whether he was Jewish. 
'Cantor' is just Latin for singer. 

G. F. L. P. Cantor is the most important mathematician of 
the nineteenth century and a figure of great complexity and 
pathos. He was in and out of mental hospitals for much of his 
later adulthood and died in a sanitarium in Halle1 in 1918. 
K. Godel, the most important mathematician of the twentieth 

century, also died as the result of mental illness. L. Boltzmann, 

1 IYI Halle, a literal salt mine just upriver from Leipzig, is best known as 

Handel's hometown. 
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the most important mathematical physicist of the nineteenth 
century, committed suicide. And so on. Historians and pop 
scholars tend to spend a lot of time on Cantor's psychiatric 
problems and on whether and how they were connected to 
his work on the mathematics of oo. 

At Paris's 2nd International Congress of Mathematicians 
in 1900, Prof. D. Hilbert, then the world's #1 mathematician, 
described Georg Cantor's transfinite numbers as "the finest 
product of mathematical genius" and "one of the most beau
tiful realizations of human activity in the domain of the 
purely intelligible." 

Here is a quotation from G. K. Chesterton: "Poets do not 
go mad; but chess players do. Mathematicians go mad, and 
cashiers; but creative artists very seldom. I am not attacking 
logic: I only say that this danger does lie in logic, not in imag
ination." Here also is a snippet from the flap copy for a recent 
pop bio of Cantor: "In the late nineteenth century, an extra
ordinary mathematician languished in an asylum. . . . The 
closer he came to the answers he sought, the further away 
they seemed. Eventually it drove him mad, as it had mathe
maticians before him." 

The cases of great mathematicians with mental illness have 
enormous resonance for modern pop writers and filmmak
ers. This has to do mostly with the writers'/directors' own 
prejudices and receptivities, which in turn are functions of 
what you could call our era's particular archetypal template. 
It goes without saying that these templates change over time. 
The Mentally Ill Mathematician seems now in some ways to 
be what the Knight Errant, Mortified Saint, Tortured Artist, 
and Mad Scientist have been for other eras: sort of our 
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Prometheus, the one who goes to forbidden places and 
returns with gifts we all can use but he alone pays for. That's 
probably a bit overblown, at least in most cases.2 But Cantor 
fits the template better than most. And the reasons for this 
are a lot more interesting than whatever his problems and 

3 symptoms were. 
Merely knowing about Cantor's accomplishments is differ

ent from appreciating them, which latter is the general project 
here and involves seeing transfinite math as kind of like a tree, 
one with its roots in the ancient Greek paradoxes of continu
ity and incommensurability and its branches entwined in the 
modem crises over math's foundations--Brouwer and Hilbert 
and Russell and Frege and Zermelo and Godel and Cohen et al. 
The names right now are less important than the tree thing, 
which is the main sort of overview-trope you'll be asked to 

keep in mind. 

2 IYI although so is the other, antipodal stereotype of mathematicians 

as nerdy little bowtied fissiparous creatures. In today's archetypology, the 

two stereotypes seem to play off each other in important ways. 
3 In modem medical terms, it's fairly clear that G. F. L. P. Cantor suf

fered from manic-depressive illness at a time when nobody knew what this 

was, and that his polar cycles were aggravated by professional stresses and 

disappointments, of which Cantor had more than his share. Of course, this 

makes for less interesting flap copy than Genius Driven Mad By Attempts 

To Grapple With '7J. The truth, though, is that Cantor's work and its con

text are so totally interesting and beautiful that there's no need for breath

less Prometheusizing of the poor guy's life. The real irony is that the view 

of oo as some forbidden zone or road to insanity-which view was very old 

and powerful and haunted math for 2000+ years-is precisely what Cantor's 

own work overturned. Saying that '7J drove Cant.or mad is sort of like 

mourning St. George's loss to the dragon: it's not only wrong but insulting. 
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§lb. Chesterton above is wrong in one respect. Or at 
least imprecise. The danger he's trying to name is not logic. 
Logic is just a method, and methods can't unhinge people. 
What Chesterton's really trying to talk about is one of 
logic's main characteristics-and mathematics'. Abstractness. 

Abstraction. 
It is worth getting straight on the meaning of abstraction. 

It's maybe the single most important word for appreciating 
Cantor's work and the contexts that made it possible. Gram
matically, the root form is the adjectival, from the L. abstractus = 

'drawn away'. The 0.E.D. has nine major definitions of the 
adjective, of which the most apposite is 4.a.: "Withdrawn or 
separated from matter, from material embodiment, from 
practice, or from particular examples. Opposed to concrete." 
Also of interest are the O.E.D.'s 4.b., "Ideal, distilled to its 
essence," and 4.c., "Abstruse." 

Here is a quotation from Carl B. Boyer, who is more or less 
the Gibbon of math history4

: "But what, after all, are the inte
gers? Everyone thinks that he or she knows, for example, 
what the number three is-until he or she tries to define or 
explain it.'' W/r/t which it is instructive to talk to 1st- and 
2nd-grade math teachers and find out how children are actu

ally taught about integers. About what, for example, the num
ber five is. First they are given, say, five oranges. Something 
they can touch or hold. Are asked to count them. Then they 

4 IYI Boyer is joined at the top of the math-history food chain only by 

Prof. Morris Kline. Boyer's and Kline's major works are respectively A His
tory of Mathematics and Mathematical Thought from Ancient to Modern 

Times. Both books are extraordinarily comprehensive and good and will be 

liberally cribbed from. 
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are given a picture of five oranges. Then a picture that com
bines the five oranges with the numeral '5' so they associate 
the two. Then a picture of just the numeral '5' with the 
oranges removed. The children are then engaged in verbal 
exercises in which they start talking about the integer 5 per se, 
as an object in itself, apart from five oranges. In other words 
they are systematically fooled, or awakened, into treating 
numbers as things instead of as symbols for things. Then they 
can be taught arithmetic, which comprises elementary rela
tions between numbers. (You will note how this parallels the 
ways we are taught to use language. We learn early on that the 
noun 'five' means, symbolizes, the integer 5. And so on.) 

Sometimes a kid will have trouble, the teachers say. Some 
children understand that the word 'five' stands for 5, but they 
keep wanting to know 5 what? 5 oranges, 5 pennies, 5 points? 
These children, who have no problem adding or subtracting 
oranges or coins, will nevertheless perform poorly on arith
metic tests. They cannot treat 5 as an object per se. They are 
often then remanded to Special Ed Math, where everything is 
taught in terms of groups or sets of actual objects rather than 
as numbers "withdrawn from particular examples."5 

5 B. Russell has an interesting 1 in this regard about high-school math, 
which is usually the next big jump in abstraction after arithmetic: 

In the beginning of algebra, even the most intelligent child finds, as 
a rule, very great difficulty. The use of letters is a mystery, which 

seems to have no purpose except mystification. It is almost impossi

ble, at first, not to think that every letter stands for some particular 

number, if only the teacher would reveal what number it stands for. 

The fact is, that in algebra the mind is first taught to consider gen

eral truths, truths which are not asserted to hold only of this or that 

particular thing, but of any one of a whole group of things. It is in 
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The point: The basic def. of 'abstract' for our purposes is 
going to be the somewhat concatenated 'removed from or 
transcending concrete particularity, sensuous experience'. 
Used in just this way, 'abstract' is a term from metaphysics. 
Implicit in all mathematical theories, in fact, is some sort of 
metaphysical position. The father of abstraction in mathe
matics: Pythagoras. The father of abstraction in metaphysics: 
Plato. 

The O.E.D.'s other clefs. are not irrelevant, though. Not just 
because modern math is abstract in the sense of being 
extremely abstruse and arcane and often hard to even look at 
on the page. Also essential to math is the sense in which 
abstracting something can mean reducing it to its absolute 
skeletal essence, as in the abstract of an article or book. As 
such, it can mean thinking hard about things that for the 
most part people can't think hard about-because it drives 
them crazy. 

All this is just sort of warming up; the whole thing won't 
be like this. Here are two more quotations from towering fig
ures. M. Kline: "One of the great Greek contributions to the 
very concept of mathematics was the conscious recognition 
and emphasis of the fact that mathematical entities are 
abstractions, ideas entertained by the mind and sharply 
distinguished from physical objects or pictures." F.d.l. Saus
sure: "What has escaped philosophers and logicians is that 
from the moment a system of symbols becomes independent 

the power of understanding and discovering such truths that the 

mastery of the intellect over the whole world of things actual and 

possible resides; and ability to deal with the general as such is one of 

the gifts that a mathematical education should bestow. 
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of the objects designated it is itself subject to undergoing dis
placements that are incalculable for the logician." 

Abstraction has all kinds of problems and headaches built 
in. we all know. Part of the hazard is how we use nouns. We 
think of nouns' meanings in terms of denotations. Nouns 
stand for things-man, desk, pen, David, head, aspirin. A spe
cial kind of comedy results when there's confusion about 
what's a real noun, as in 'Who's on first?' or those Alice in 

Wonderland routines-'What can you see on the road?' 
'Nothing.' 'What great eyesight! What does nothing look 
like?' The comedy tends to vanish, though, when the nouns 
denote abstractions, meaning general concepts divorced from 
particular instances. Many of these abstraction-nouns come 
from root verbs. 'Motion' is a noun, and 'existence'; we use 
words like this all the time. The confusion comes when we try 
to consider what exactly they mean. It's like Boyer's point 
about integers. What exactly do 'motion' and 'existence' 
denote? We know that concrete particular things exist, and 
th.at sometimes they move. Does motion per se exist? In what 
way? In what way do abstractions exist? 

Of course, that last question is itself very abstract. Now 
you can probably feel the headache starting. There's a special 
sort of unease or impatience with stuff like this. Like 'What 
exactly is existence?' or 'What exactly do we mean when we 
talk about motion?' The unease is very distinctive and sets in 
only at a certain level in the abstraction process-because 
abstraction proceeds in levels, rather like exponents or dimen
sions. Let's say 'man' meaning some particular man is Level 
One. 'Man' meaning the species is Level Two. Something like 
'humanity' or 'humanness' is Level Three; now we're talking 
about the abstract criteria for something qualifying as human. 
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And so forth. Thinking this way can be dangerous, weird. 
Thinking abstractly enough about anything ... surely we've 
all had the experience of thinking about a word-'pen,' say
and of sort of saying the word over and over to ourselves 
until it ceases to denote; the very strangeness of calling some
thing a pen begins to obtrude on the consciousness in a 
creepy way, like an epileptic aura. 

As you probably know, much of what we now call analytic 
philosophy is concerned with Level Three- or even Four-grade 
questions like this. As in epistemology = 'What exactly is 
knowledge?'; metaphysics = 'What exactly are the relations 
between mental constructs and real-world objects?'; etc.6 It 
might be that philosophers and mathematicians, who spend a 
lot of time thinking (a) abstractly or (b) about abstractions or 
(c) both, are eo ipso rendered prone to mental illness. Or it 
might just be that people who are susceptible to mental ill
ness are more prone to think about these sorts of things. It's a 
chicken-and-egg question. One thing is certain, though. It is 
a total myth that man is by nature curious and truth-hungry 
and wants, above all things, to know. 7 Given certain recog
nized senses of 'to know,' there is in fact a great deal of stuff 
we do not want to know. Evidence for this is the enormous 
number of very basic questions and issues we do not like to 
think about abstractly. 

6 IYI According to most sources, G. F. L. P. Cantor was not just a math

ematician-he had an actual Philosophy of the Infinite. It was weird and 

quasi-religious and, not surprisingly, abstract. At one point Cantor tried to 

switch his U. Halle job from the math dept. to philosophy; the request was 

turned down. Admittedly, this was not one of his stabler periods. 
7 IYI The source of this pernicious myth is Aristotle, who is in certain 

respects the villain of our whole Story-<}.V. §2 sub. 
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. Theory: The dreads and dangers of abstract thinking are 
a big reason why we now all like to stay so busy and bom
barded with stimuli all the time. Abstract thinking tends 
most often to strike during moments of quiet repose. As in 
for example the early morning, especially if you wake up 
slightly before your alarm goes off, when it can suddenly and 
for no reason occur to you that you've been getting out of 
bed every morning without the slightest doubt that the floor 
would support you. Lying there now considering the matter, 
it appears at least theoretically possible that some flaw in the 
floor's construction or its molecular integrity could make it 
buckle, or that even some aberrant bit of quantum flux or 
something could cause you to melt right through. Meaning it 
doesn't seem logically impossible or anything. It's not like 
you're actually scared that the floor might give way in a 
moment when you really do get out of bed. It's just that cer
tain moods and lines of thinking are mo.re abstract, not just 
focused on whatever needs or obligations you're going to get 
out of bed to attend to. This is just an example. The abstract 
question you're lying there considering is whether you are 
truly justified in your confidence about the floor. The initial 
answer, which is yes, lies in the fact that you've gotten out of 
bed in the morning thousands-actually well over ten thou
sand times so far, and each time the floor has supported you. 
It's the same way you're also justified in believing that the sun 
will come up, that your wife will know your name, that when 
you feel a certain set of sensations it means you're getting 
ready to sneeze, & c. Because they've happened over and over 
before. The principle involved is really the only way we can 

'.predict any of the phenomena we just automatically count on 
~.'~thout having to think about them. And the vast bulk of 



14 DA YID FOSTER WALLACE 

daily life is composed of these sorts of phenomena; and with
out this confidence based on past experience we'd all go 
insane, or at least we'd be unable to function because we'd 
have to stop and deliberate about every last little thing. It's a 
fact: life as we know it would be impossible without this con
fidence. Still, though: Is the confidence actually justified, or 
just highly convenient? This is abstract thinking, with its dis
tinctive staircase-shaped graph, and you're now several levels 
up. You're no longer thinking just about the floor and your 
weight, or about your confidence re same and how necessary 
to basic survival this kind of confidence seems to be. You're 
now thinking about some more general rule, law, or principle 
by which this unconsidered confidence in all its myriad forms 
and intensities is in fact justified instead of being just a series 
of weird clonic jerks or reflexes that propel you through the 
day. Another sure sign it's abstract thinking: You haven't 
moved yet. It feels like tremendous energy and effort is being 
expended and you're still lying perfectly still. All this is just 
going on in your mind. It's extremely weird; no wonder most 
people don't like it. It suddenly makes sense why the insane 
are so often represented as grabbing their head or beating 
it against something. If you had the right classes in school, 
however, you might now recall that the rule or principle you 
want does exist-its official name is the Principle of Induc
tion. It is the fundamental precept of modern science. With
out the Principle of Induction, experiments couldn't confirm 
a hypothesis, and nothing in the physical universe could be 
predicted with any confidence at all. There could be no 
natural laws or scientific truths. The P.I. states that if some
thing x has happened in certain particular circumstances n 
times in the past, we are justified in believing that the same 
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circumstances will produce x on the ( n + I )th occasion. The 
P.I. is wholly respectable and authoritative, and it seems like a 
well-lit exit out of the whole problem. Until, that is, it hap
pens to strike you (as can occur only in very abstract moods 
or when there's an unusual amount of time before the alarm 
goes off) that the P.I. is itself merely an abstraction from 
experience ... and so now what exactly is it that justifies our 
confidence in the P.I.? This latest thought may or may not be 
accompanied by a concrete memory of several weeks spent 
on a relative's farm in childhood (long story). There were 
four chickens in a wire coop off the garage, the brightest of 
whom was called Mr. Chicken. Every morning, the farm's 
hired man's appearance in the coop area with a certain 
burlap sack caused Mr. Chicken to get excited and start doing 
warmup-pecks at the ground, because he knew it was feeding 
time. It was always around the same time t every morning, 
and Mr. Chicken had figured out that t(man + sack) = food, 
and thus was confidently doing his warmup-pecks on that 
last Sunday morning when the hired man suddenly reached 
out and grabbed Mr. Chicken and in one smooth motion 
wrung his neck and put him in the burlap sack and bore him 
off to the kitchen. Memories like this tend to remain quite 
vivid, if you have any. But with the thru:;t, lying here, being 
that Mr. Chicken appears now actually to have been correct
according to the Principle of Induction-in expecting noth
ing but breakfast from that ( n + 1 )th appearance of man + 
sack at t. Something about the fact that Mr. Chicken not only 
didn't suspect a thing but appears to have been wholly justified 
in not suspecting a thing-this seems concretely creepy and 
upsetting. Finding some higher-level justification for your 
confidence in the P.I. seems much more urgent when you 
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realize that, without this justification, our own situation is 
basically indistinguishable from that of Mr. Chicken. But the 
conclusion, abstract as it is, seems inescapable: what justifies 
our confidence in the Principle of Induction is that it has 
always worked so well in the past, at least up to now. Mean
ing that our only real justification for the Principle of Induc
tion is the Principle of Induction, which seems shaky and 
question-begging in the extreme. 

The only way out of the potentially bedridden-for-life 
paralysis of this last conclusion is to pursue further abstract 
side-inquiries into what exactly 'justification' means and 
whether it's true that the only valid justifications for certain 
beliefs and principles are rational and noncircular. For instance, 
we know that in a certain number of cases every year cars 
suddenly veer across the centerline into oncoming traffic 
and crash head-on into people who were driving along not 
expecting to get killed; and thus we also know, on some level, 
that whatever confidence lets us drive on two-way roads is 
not I 00% rationally justified by the laws of statistical proba
bility. And yet 'rational justification' might not apply here. It 
might be more the fact that, if you cannot believe your car 
won't suddenly get crashed into out of nowhere, you just 
can't drive, and thus that your need/desire to be able to drive 
functions as a kind of 'justification' of your confidence.8 

8 A compelling parallel here is the fact that most of us fly despite know

ing that a definite percentage of commercial airliners crash every year. 

This gets into the various different kinds of knowing v. 'knowing,' though 

(see §le below). Plus it involves etiquette, since commercial air travel is 

public and a kind of group confidence comes into play. This is why turn

ing to inform your seatmate of the precise statistical probability of your 
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It would be better not to then start analyzing the various 
putative 'justifications' for your need/desire to be able to drive 
a car-at some point you realize that the process of abstract 
justification can, at least in principle, go on forever. The abil
ity to halt a line of abstract thinking once you see it has no end 
is part of what usually distinguishes sane, functional people
people who when the alarm finally goes off can hit the floor 
without trepidation and plunge into the concrete business of 
the real workaday world-from the unhinged. 

INTERPOLUION 

The tactical reason for sometimes using 'oo' instead of 'infin
ity' in the natural-language text here is that the double-blink 
strangeness of 'co' serves as a reminder that it's not clear what 
we're even talking about. Not yet. For instance, beware of 
thinking that co is just an incredibly, unbelievably enormous 
number. There are, of course, many such numbers, especially 
in physics and astronomy-like, if in physics an ultranano
instant of 5 X 10-44 seconds is generally acknowledged to be the 
smallest time-interval in which the normal concept of contin
uous time applies (which it is), astronomical data indicates 
that there have been roughly 6 X 1060 such ultranano-instants 
since the Big Bang. That's a 6 followed by 60 zeroes. We've all 
heard about numbers like this, which we usually imagine can 

plane crashing is not false but cruel: you are messing with the delicate 

psychological infrastructure of her justification for flying. 

IYI Depending on mood/time, it might strike you as interesting that 

people who cannot summon this strange faith in principles that cannot be 
rationally justified, and so cannot fly, are commonly referred to as having an 

'irrational fear' of flying. 



18 DA vm FosTl!R WALLACE 

be conceived and manipulated only with really advanced 
super-cooled computers or something. Actually, there are 
plenty of numbers too big for any real or even theoretical 
computer to process. Bremermann.'s Limit is the operative 
term here. Given limits imposed by basic quantum theory, 
one H. Bremermann proved in 1962 that "No data process
ing system, whether artificial or living, can process more than 
2 X 1047 bits per second per gram of its mass," which means 
that a hypothetical supercomputer the size of the earth 
( = c. 6 X 1027 grams) grinding away for as long as the earth has 
existed{= about 1010 years, with c. 3.14 X 107 seconds/year) 
can have processed at most 2.56 X 2092 bits, which number is 
known as Bremermann's Limit. Calculations involving num
bers larger than 2.56 X 2092 are called transcomputational 

problems, meaning they're not even theoretically doable; and 
there are plenty of such problems in statistical physics, com
plexity theory, fractals, etc. All this is sexy but not quite ger
mane. What's germane is: Take some such transcomputational 
number, imagine it's a grain of sand, conceive of a whole 
beach, or desert, or planet, or even galaxy filled with such 
sand, and not only will the corresponding IOx number be 
<oo, but its square will be <oo, and lO(xOctXl) will be <oo, and so 
on; and actually it's not even right to compare 10x and oo 
arithmetically this way because they're not even in the same 
mathematical area code--even, as it were, the same dimen
sion. And yet it's also true that some oos are bigger than oth
ers, as in arithmetically bigger. All this will get discussed; the 
thing for now is that only after R. Dedekind and G. Cantor is 
it even possible to talk about infinite quantities and their 
arithmetic coherently, meaningfully. Hence the point of 
using 'oo'. 
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IYI The 'oo' symbol itself is technically called the lemniscate 
(apparently from the Greek for 'ribbon') and was introduced 
to math by John Wallis in his 1655 Arithmetica infinitorum, 

which was one of the important preliminaries for Newton's 
brand of calculus.9 Wallis's contemporary Thomas Hobbes, 
something of a mathematical crank, complained in a review 
that Arithmetica infinitorum was too brutally abstract to even 
try to read, "a scab of symbols," thereby speaking for genera
tions of undergrads to follow. Other names for the lemniscate 
include 'the love knot' and 'the Cartesian plane curve that 
satisfies the equation (x 2 + y2)2 = a2(x2 

- y2)'. If, on the 
other hand, it's treated trigonometrically and called 'the 
curve that satisfies the polar equation r2 = a cos 20,' it is also 
known as Bernoulli's Lemniscate. 

END INTERPOLATION 

§le. Apropos the whole business of abstractness and 
nouns' denotations, there is a syndrome that's either a high
level abstraction or some type of strange nominal mutation. 
'Horse' can mean this one horse right here, or it can mean 
the abstract concept, as in 'Horse = hoofed mammal of fam
ily Equidae'. Same with the word 'horn'; same with 'fore
head'. All these can be abstracted from particulars, but we 
still know they came from particulars. Except what about a 
unicorn, which seems to result from the combination of the 
concepts 'horse,' 'horn,' and 'forehead' and thus has its whole 
origin in the concatenation of abstractions? Meaning we can 

9 M As it happens, the only thing that kept Wallis from actually invent

ing differential calculus in A. i. was his ignorance of the Binomial Theorem, 

which is essential to working with infinitesimals-see esp. §4 below. 
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conjoin and manipulate abstractions to form entities whose 
nouns have no particular denotations at all. Here the big 
problem becomes: In what way can we say a unicorn exists 
that is fundamentally different, less real, than the way abstrac
tions like humanity or horn or integer exist? Which is once 
again the question: In what way do abstract entities exist, or 
do they exist at all except as ideas in human minds-i.e., are 
they metaphysical fictions? This sort of question can keep 
you in bed all day too. And it hangs over math from the 
beginning-what is the ontological status of mathematical 
entities and relations? Are mathematical realities discovered, 
or merely created, or somehow both? Here is M. Kline again: 
"The philosophical doctrines of the Greeks limited mathe
matics in another way. Throughout the classical period they 
believed that man does not create the mathematical facts: 
they preexist. He is limited to ascertaining and recording 
them." 

Plus here is another quotation from D. Hilbert, the great 
early champion of Cantor's transfinites: 

[T]he infinite is nowhere to be found in reality, no matter 
what experiences, observations, and knowledge are 
appealed to. Can thought about things be so much differ
ent from things? Can thinking processes be so unlike the 
actual process of things? In short, can thought be so far 
removed from reality? 

And it's true: there is nothing more abstract than infinity. 
Meaning at least our fuzzy, intuitive, natural-language concept 
of oo. It's sort of the ultimate in drawing away from actual 
experience. Take the single most ubiquitous and oppressive 
feature of the concrete world-namely that everything ends, 
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is limited, passes away-and then conceive, abstractly, of 
something without this feature. Analogies to certain ideas of 
God are obvious; abstraction from all limitation is one way to 
account for the religious impulse in secular terms. This is 
a.k.a. the anthropology of religion: a perfect being can be 
understood as one devoid of all the imperfections we perceive 
in ourselves and the world, an omnipotent one as without 
limitations on his will, etc. The fact that it's a pretty dry and 
doleful way to talk about religion is neither here nor there; 
the point is that the exact same sort of explanation can be 
given for where we got the concept of oo and what we ulti
mately mean by all the forms of the word 'infinite' we toss 
around. Whether it's actually the right explanation, though, 
involves what it commits us to. Meaning metaphysically. Do 
we really want to say that oo exists only in the way that uni
corns do, that it's all a matter of our manipulating abstrac
tions until the noun 'infinity' has no real referent? What 
about the set of all integers? Start counting at 1, 2, 3, and so 
on, and realize that you'll never stop, nor your children when 
you die, nor theirs, and so on. The integers never stop; there 
is no end. Does the set of all integers compose a real oo? Or 
are the integers themselves not really real but just abstrac
tions; plus what exactly is a set, and are sets real or just con
ceptual devices, etc.? Or are maybe integers and/or sets only 
'mathematically real' as opposed to really real, and what 
exactly is the difference, and might we want to grant oo a cer
tain mathematical reality but not the other kind (assuming 
there's only one other kind)? And at what point do the ques
tions get so abstract and the distinctions so fine and the 
cephalalgia so bad that we simply can't handle thinking about 
any of it anymore? 
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It is in areas like math and metaphysics that we encounter 
one of the average human mind's weirdest attributes. This is 
the ability to conceive of things that we cannot, strictly speak
ing, conceive of. We can conceive in some rough way of what 
omnipotence is, for instance. At least we can use the word 
'omnipotence' with a fair degree of confidence that we know 
what we're talking about. And yet even a schoolboy's anti
nomy like 'Can an omnipotent being make something too 
heavy for him to lift?' points up serious faultlines in our every
day understanding of omnipotence. So there is one more kind 
of abstraction that's relevant here. This one is more psycho
logical, and very modern. 

Obvious fact: Never before have there been so many gap
ing chasms between what the world seems to be and what 
science tells us it is. 'Us' meaning laymen. It's like a million 
Copernican Revolutions all happening at the same time. As 
in for instance we 'know,' as high-school graduates and read
ers of Newsweek, that time is relative, that quantum particles 
can be both there and not, that space is curved, that colors do 
not inhere in objects themselves, that astronomic singulari
ties have infinite density, that our love for our children is 
evolutionarily preprogrammed, that there is a blind spot in 
the center of our vision that our brains automatically fill in. 
That our thoughts and feelings are really just chemical trans
fers in 2.8 pounds of electrified pate. That we are mostly 
water, and water is mostly hydrogen, and hydrogen is flam
mable, and yet we are not flammable. We 'know' a near
infinity of truths that contradict our immediate commonsense 
experience of the world. And yet we have to live and function 
in the world. So we abstract, compartmentalize: there's stuff 
we know and stuff we 'know'. I 'know' my love for my child 
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is a function of natural selection, but I know I love him, and 
I feel and act on what I know. Viewed objectively, the whole 
thing is deeply schizoid; yet the fact of the matter is that as 
subjective laymen we don't often feel the conflict. Because of 
course our lives are 99.9% concretely operational, and we 
operate concretely on what we know, not on what we 'know'. 

Again, we're talking about laymen like you and me, not 
about the giants of philosophy and math, many of whom had 
famous trouble navigating the real world. Einstein leaving 
home in his pajamas, Godel unable to feed himself, and so 
on. To appreciate what the inner lives of great scientists/ 
mathematicians/metaphysicians are like, we need only lie 
here and try to form a truly rigorous and coherent idea-as 
opposed to a fuzzy or Newsweeki.sh idea-<lf what we really 
mean by 'omnipotent,' or 'integer,' or 'illimitable,' or 'finite 
but unbounded'. To try to do some disciplined or directed 
abstract thinking. 10 There's a very definite but inarticulable 
fuguelike strain involved in this kind of thinking, a sensation 
that the epilepsis of saying 'pen, pen' over and over is but a 
faint pale shadow of. One of the quickest routes to this feeling 
is (from personal A.M. experience) to try to think hard about 
dimension. There is something I 'know,' which is that spatial 
dimensions beyond the Big 3 exist. I can even construct a 
tesseract or hypercube out of cardboard. A weird sort of 
cube-within-a-cube, a tesseract is a 3D projection of a 4D 
object in the same way that 'tEJ:I' is a 2D projection of a 3D 
object. The trick is imagining the tesseract's relevant lines and 

10 The unique and redoubtable Dr. E. Robert Goris of U-- Sr. High 

School's AP Math I and II used to refer to this also as 'private-sector think

ing,' meaning actual productive results were expected. 
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planes at 90° to each other (it's the same with 'tE!:I' and a real 
cube), because the 4th spatial dimension is one that some
how exists at perfect right angles to the length, width, and 
depth of our regular visual field. I 'know' all this, just as you 
probably do ... but now try to really picture it. Concretely. 
You can feel, almost immediately, a strain at the very root of 
yourself, the first popped threads of a mind starting to give at 
the seams. 

W/r/t 'knowing' v. really actually knowing, the second kind 
is what Descartes meant by "clear and distinct apprehension" 
and what modern slang connotes via 'handle' or 'deal with'. 
Thus again the epistoschizoid state of the modern lay mind: 
We feel like we 'know' things that our minds' conceptual appa
ratus can't really deal with. These are often objects and concepts 
at the very farthest reaches of abstraction, things we literally can
not imagine: n > 3 manifolds, quantum choreography, fractal 
sets, dark matter, square roots of negatives, Klein Bottles and 
Freemish Crates and Penrose Stairways. And oo. Often, these 
sorts of things are characterized as existing only 'intellectually' 
or 'mathematically'. It is, again, far from clear what this means, 
although the terms themselves are child's play to use. 

Note, please, that this lay ability to split our awareness and 
to 'know' things we cannot handle is distinctively modern. 
The ancient Greeks, for instance, could not do this. Or 
wouldn't. They needed things neat, and felt you couldn't 
know something unless you really understood it. 11 It is not an 
accident that their mathematics included neither 0 nor co. 
Their word for infinity also meant 'mess'. 

11 IYI This is why most of Plato (and nearly all of Aristotle) is about 

trying to conceptualize and systematize the abstract. 
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The Greek spirit has informed the philosophy and practice 
of mathematics from the beginning. Mathematical truths are 
established by logical proof and are extremely neat and clean. 
It is just this that exempts math from labyrinthine problems 
like how exactly to justify the Principle of Induction: mathe
matical relations and proofs are not inductive but deductive, 
formal. Math is, in other words, a formal system, with 'for

mal' meaning pure form, 100% abstract. The core idea is that 
mathematical truths are certain and universal precisely 
because they have nothing to do with the world. If that's a bit 

opaque, here is a passage from G. H. Hardy's A Mathematician's 
Apology, the most lucid English prose work ever on math: 

"The certainty of mathematics," says [A. N.) Whitehead, 
"depends on its complete abstract generality." When we 
assert that 2 + 3 = 5, we are asserting a relation between 
three groups of 'things'; and these 'things' are not apples 
or pennies, or things of any one particular sort or another, 
but just things, 'any old things.' The meaning of the state
ment is entirely independent of the individualities of the 
members of the groups. All mathematical 'objects' or 
'entities' or 'relations,' such as '2,' '3,' '5,' '+,'or'=,' and 
all mathematical propositions in which they occur, are 
completely general in the sense of being completely 
abstract. Indeed one of Whitehead's words is superfluous, 
since generality, in this sense, is abstractness. 

In which quotation please note that 'generality' refers not just 
to the abstractness of individual terms and referents but 
to the complete abstract universality of the truths asserted. 
This is the difference between a mere math factoid and a 
mathematical theorem. A famous example of this difference 
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(famous to students of Dr. Goris, anyway) is that (I) 'The 
sum of the series (1 + 3 + 5 + 7 + 9) = 52

' is a factoid, 
whereas (2) 'For any x, the sum of the first x odd integers = 

x 2
' is a theorem, i.e. actual math. 
What follows here is mostly intended as a reminder of stuff 

you already know in a rough way or had in school. If your 
familiarity with formal systems is better than rough, you will 
recognize the following three ts as extremely crude and sim
plistic and are invited to treat them as IYI and skip or skim. A 
formal system of proof requires axioms and rules of inference. 
Axioms are basic propositions so obvious they can be asserted 
without proof. E.g. recall Euclid's Axioms or Peano's Postu
lates from school. Rules of inference, which are sometimes 
called the Laws of Thought, are the logical principles that jus
tify deriving truths from other truths. 12 Some of the rules of 
inference are as simple as the Law of Identity, which basically 
holds that if anything is P, then it is P. Some others are more 
involved. For our purposes, two rules of inference are espe
cially important. The first is known as the Law of the F.xcluded 
Middle (LEM). By LEM, a mathematical proposition P must be 
either true or, if not true, false. 13 The other big rule of inference 
involves the logical relation of entailment, meaning 'If ... then' 
and often represented by the symbol'~'. The most obvious 

12 N.B. Significance notwithstanding, a proven truth in a formal system is 

technically known as a theorem-hence the Pythagorean Theorem, etc. 
13 IYI The 'or, if not true,' part is required in formal logic because of 

certain properties of the disjunctive operator 'or'. We'U do as little of this 

sort of arcana as possible. (Except while we're at it, let's confess that we're 

using 'LEM' in an informal way that also comprises the principle of biva
lence. Letting 'LEM' connote the whole schmeer of Two-Valued Logic is 

fine for our purposes, but be advised that it's not 100% rigorous.) 
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rule of entailment is that (1) 'P---') Q' and (2) 'Pis true' license 
the conclusion (3) 'Q is true'. The one we're going to use a lot is 
the obverse of this rule and is usually called modus tollens; it 
holds that (1) 'P---') Q' and (2) 'Q is false' license (3) 'Pis false'. 14 

One reason why LEM and modus tollens are important to 

math is that they enable the method of Indirect Proof, also 
known as proof by reductio ad absurdum or sometimes just 

reductio. Here's how it works. Say you want to prove P. What 

you do is assume not-P and then show that not-P logically 
entails a contradiction like, say, 'Q & not-Q'. (By LEM, 

nothing can be both true and false, so the conjunction 
'Q & not-Q' will always be false.) By modus tollens, if (l} not

p---') (Q & not-Q} and (2) (Q & not-Q) is false, then (3) not

p is false; and, by LEM, 15 if not-Pis false, then P must be true. 

14 Modus tollens ( = Latin for 'method of denying') might not look like a 

universal rule unless you keep in mind that entailment, as a logical relation, 

has to do not with cause but with surety. Necessary- and sufficient condition 
are the terms in applied logic. If, for example, P is taken to mean 'is 5 feet tall' 

and Q to mean 'is at least 4 feet l l inches tall,' then the purely logical meaning 

of'P ~ Q' becomes evident: it really means 'If Pis true then there is no way 

Q can be false'. Modus-tollenizing this into 'not-Q ~ not-P' is simply saying 

that if somebody is not 4' 11" then there is no way she can be 5'0". 

By the way, one other logical relation is going to be important far below 

in §Se and might as well get locked down here. It's the relation of conjunc

tion, meaning 'and' and usually symbolized by '&' or '/\'. The big rule is 

that 'P & Q' is true only when P and Q are individually both true; if either 

one is false, the whole conjunction is false. 
15 IYI Well, this is technically not so much by LEM as by the definition 

of the truth-functional connective not-, which definition however either 

derives from LEM or (as some argue) is the same as LEM. N.B. also that 

some formal systems include the whole reductio transaction as an axiom, 

sometimes called the Law of Absurdity. 



28 DA YID FOSTER WALLACE 

Many of the really great, famous proofs in the history of 
math have been reductio proofs. Here's an example. It is 
Euclid's proof of Proposition 20 in Book IX of the Elements. 
Prop. 20 concerns the primes, which-as you probably 
remember from school-are those integers that can't be 
divided into smaller integers w/o remainder. Prop. 20 basi
cally states that there is no largest prime number. (What this 
means of course is that the number of prime numbers is 
really infinite, but Euclid dances all around this; he sure 
never says 'infinite'.) Here is the proof. Assume that there is 
in fact a largest prime number. Call this number P". This 
means that the sequence of primes (2, 3, 5, 7, 11, ... , J!i) is 
exhaustive and finite: (2, 3, 5, 7, 11, .. ., P,,) is all the primes 
there are. 16 Now think of the number R, which we're defining 
as the number you get when you multiply all the primes up to 
P.i together and then add 1. R is obviously bigger than P,,. But 
is R prime? If it is, we have an immediate contradiction, 
because we already assumed that P" was the largest possible 
prime. But if R isn't prime, what can it be divided by? It obvi
ously can't be divided by any of the primes in the sequence 
(2, 3, 5, ... , P,,), because dividing R by any of these will leave 
the remainder I. But this sequence is all the primes there are, 
and the primes are ultimately the only numbers that a non
prime can be divided by. So if R isn't prime, and if none of the 
primes (2, 3, 5, ... , P,,) can divide it, there must be some other 
prime that divides R. But this contradicts the assumption that 

16 You'll recollect from high school that ellipses inside a sequence or 

series mean 'all the relevant terms in between'; if they're at the end they 

mean 'and so on and so on w/o end'. This is an abbreviation that gets used 

in pure math a lot. 
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(2, 3, 5, ... , P,,) is exhaustive of all the prime numbers. Either 
way, we have a clear contradiction. And since the assumption 
that there's a largest prime entails a contradiction, modus 
tollens dictates that the assumption is necessarily false, which 
by LEM 17 means that the denial of the assumption is neces
sarily true, meaning there is no largest prime. Q.E.D. 

Please observe that primeness has nothing to do with the 
world; it concerns only relations between numbers. The Greeks 
were the real inventors of what we call math, because
again-they were the first people to treat numbers and their 
relations as abstractions rather than as properties of collec
tions of real things. It's important to see what a leap this was. 
Just from the as it were fossil record, it's easy to see that math 
had its matrix in the concrete. As in the immediate concrete. 
Consider the facts that numbers are called 'digits' and that 
most counting systems-not just our base-10 but also the 
base-5 and -20 systems of prehistoric Europe-are clearly 
designed around fingers and toes. Or that we still talk about 
the 'leg' of a triangle or 'face' of a polyhedron, or that 'calcu
lus' comes from the Greek word for pebble, etc. It's common 
knowledge that there were pre-Greek civilizations, as in e.g. 
the Babylonians and Egyptians, with a fair degree of sophisti
cation in math; but theirs was an intensely practical math, 
used for surveying, trade and finance, navigation, & c. The 
Babylonians and Egyptians were, in other words, interested 
in the five oranges rather than the 5. It was the Greeks who 
turned math into an abstract system, a special symbolic lan
guage that allows people not just to describe the concrete 

17 Again, strictly speaking it's more complicated than that, but for our 

purposes LEM will do. 
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world but to account for its deepest patterns and laws. We 
owe them everything. 18 More to the point, the accomplish
ments of K. Weierstrass, G. Cantor, and R. Dedekind in 
modern set- and number theory are impossible to appreciate 
without understanding the hyperdimensional jump from 
math as a practical abstraction of real-world properties to 
math as a Saussurian "system of symbols ... independent of 
the objects designated." Nor, though, is true appreciation 
possible without also considering the consequent "displace
ments that are incalculable ... "; because the abstract math 
that's banished superstition and ignorance and unreason and 
birthed the modern world is also the abstract math that is 
shot through with unreason and paradox and conundrum 
and has, as it were, been trying to tie its shoes on the run ever 
since the beginning of its status as a real language. Re which, 
again, please keep in mind that a language is both a map of 
the world and its own world, with its own shadowlands and 
crevasses-places where statements that seem to obey all the 
language's rules are nevertheless impossible to deal with. 

We can assume that most of the natural-language terrain is 
already familiar-but just as a mnemonic, consider the dis
tance/levels involved between using 'tree' and 'rock' to desig
nate actual trees and rocks and W. J. Clinton's excruciating 
semantics of 'inhale' or 'have sex'. Or parse the well-known 
'I Arn Lying' paradox (also a Greek invention). Or meditate on 
sentences like '"'Makes no sense' makes no sense" makes no 
sense' or '"Is, if it immediately follows its own quotation, false" 
is, if it immediately follows its own quotation, false'. You'll 

16 m including our abstraction-schizophrenia and slavery to technol

ogy and Scientific Reason, ultimately. 
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notice that these last three, like most paradoxical crevasses, 
involve either self-reference or regressus, two demons that have 

afflicted language since as far back as we might want to go. 
Math is not exempt. And of course since mathematics is a 

totally abstract language, one whose lack of specific real-world 

referents is supposed to yield maximal hygiene, its paradoxes 

and conundra are much more of a problem. Meaning math 
has to really deal with them instead of just putting them in the 

back of its mind once the alarm goes off. Some dilemmas can 
be handled legalistically, so to speak, by definition and stipula

tion.19 Easy example from high-school algebra: From the inar

guable fact that the divisors in an equation of two fractions are 

equal if the numerators are-that is, if ~ = ~ then y = z-it 

. (x- 5) (x- 5) 
would seem that if (x _ 

4
) = (x _ 

3
), then (x - 4) = (x - 3), 

meaning 4 = 3, which is clearly a crevasse. This is handled by 

d · h th 1 "bl 1 · (x - 5) (x - 5) ecreerng t at eon y poss1 e so ut1on to (x _ 
4

) = (x _ 
3

) 

is x = 5 (since 0 divided by anything yields the same 0, which 

obviously does not entail that 4 = 3) and by stipulating that 

the theorem (~ = ~)~(y = z) holds only if x ;o! 0. 

Or here's a tricky one. We all remember repeating decimals, 

like the way~ is also .666 .... It turns out you can show that 

the repeating decimal .999 ... is equal to 1.0 with only a couple 

19 One reason math texts are so abstruse and technical is because of all 

the specifications and conditions that have to be put on theorems to keep 

them out of crevasses. In this sense they're like legal documents, and often 

about as much fun to read. 
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wholly legal moves. To wit: If x = .999 ... , then lOx = 9.999 ... ; 
so then subtract x from 1 Ox: 

9.9999999 .. . 
-0.9999999 .. . 

and you get 9x = 9.0 and thus x = 1. Is this specious or not? 
It depends how we treat the infinite sequence '.999 ... ,'like 
whether we choose to posit the existence of some number 
that's larger than .999 ... but smaller than 1.0. Such a num
ber would involve an infinitesimal, meaning a literally infinitely 
small mathematical entity. You might recall infinitesimals 
from college math. You may well however not recall-probably 
because you were not told-that infinitesimals made the 
foundations of the calculus extremely shaky and controver
sial for 200 years, and for much the same reason that Can
tor's transfinite math was met with such howling skepticism 
in the late 1800s: nothing has caused math more problems
historically, methodologically, metaphysically-than infinite 
quantities. In many ways, the history of these co-related prob
lems is the Story of Mathematics itself. 

§Id. This warm up is alt very fast and loose, of course. 
There are now some distinctions to nail down as we start 
approaching oo as an historical subject. The first is the obvi
ous one between the infinitely large ( = transfinite) and the 

infinitely tiny ( = infinitesimal, = ! ) . The second big difference 

is between oo as a feature of the physical world-as in ques
tions like is the universe infinite, is matter infinitely divisible, 
does time have a beginning or end-and oo as an abstract 
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mathematical entity or concept along the lines of function, 
number, primeness, and so on. There's already been a certain 
amount of warm up expended on the ontology of abstractions 
and whether/how math objects really exist, about which 
issues there is obviously still a whole library's worth of 
noodling that could be done. The important thing to keep 
straight is that the problems and controversies about oo that 
are going to concern us here involve whether infinite quanti
ties can actually exist as mathematical entities. 

The third distinction may at first seem picayune. It concerns 
oo-related words like 'quantity' and 'number'. These have a 
weird and confusing double connotation, the same way words 
like 'length' or 'ounce' do. A section of rope has a certain 
length but is also sometimes called 'a length of rope'; a certain 
quantity of drugs that weighs one gram is also called 'a gram of 
drugs'. In just the same way, 'quantity' and 'number' can func
tion both predicatively-that is, as satisfying the questions 
'how much?' or 'how many?' of a certain thing-and as regular 
nouns denoting the thing described. It can thus be ambiguous, 
when a term like 'infinite number' is used, whether it is being 
used predicatively ('There are an infinite number of primes') 
or nominatively ('Cantor's first infinite number is ~0'). And 
the difference is important, because the predicative usage of'oo' 
can be fuzzy and mean just 'indefinitely large' or 'really, really 
big,' whereas after Dedekind and Cantor the nominative has a 
very specific, if abstract, denotation. 

In certain respects, the power and maybe even whole 
raison d'etre of the language of math is that it's designed to 
be so clean and nonconnotative that it avoids ambiguities like 
those just above. Trying to express numerical quantities and 
relations in natural language-to translate mathematical 
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propositions into English and vice versa-often causes trou
ble.20 A favorite of Dr. Goris's was the old saw about three 
men who check into a motel late at night. There's only one 
available room left, and it costs $30, and the men decide to 
each chip in $10 and share it, but when they get up to the room 
it's a disgusting mess--apparently there was some mixup and 
the room never got cleaned after the last people checked 
out-and understandably the men call down to the manager 
to complain. Certain narrative details and flourishes can be 
omitted. The thrust is that it's late, and Housekeeping is long 
gone for the day, and there's no other room to move them to, 
so after a certain amount of back and forth the manager 

agrees to knock $5 off the price of the room and to supply 
clean linens, and he sends a bellboy up to the room with the 
linens and towels and the $5 refund in the form of five $1 
bills. Etc. etc., with the point being that there's five $1 bills 
and three guys, so what the guys (who've mysteriously mel
lowed) do is they each take back one dollar and let the bell
boy keep the remaining $2 as a tip. So each man originally 
paid $10 and got $1 back, meaning each paid $9, which adds 
up to $27, and the bellboy has the other $2, which all together 
sums to $29, so where's the other dollar? In which problem 
the point is that the verbiage (of which there was consider
ably more in the Dr. G. version-he had a whole running 
year-long epic about these three men and their various bios 
and travails and the different mathematical conundra they were 
always bumbling into) lulls you into fuzzily trying to calculate 
(30 - 3) + 2 instead of the apposite (30 - 5) + (3 + 2), 

20 You will remember how especially unpleasant Word Problems were, 

in math classes. 
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resulting in much confusion and mirth and possible Extra 
Credit. 

There are all sorts of interlinguistic teasers like this. The 
ones that aren't solvable become actual paradoxes, some of 
which are profound. It should be unsurprising, since oo is 
both the ultimate abstraction and inveterately fuzzy, that it 
figures in many such paradoxes. Like take the ideas that there 
is no last or largest integer and that time extends infinitely 
forward. Then imagine a perfectly constructed and durable 
desk lamp with a big red On/Off button, and imagine that 
this morning the lamp is off but at 4:30 P.M. CST it will be 
turned on, then at 4:30 P.M. tomorrow it will be turned back 
off, but then back on again at 4:30 the following day, and so 
on, every day, for the rest of time; and now contemplate 
whether, after an infinite number of days, the lamp will be on 
or off. You might recall from college math21 that this is actu
ally a Word Problem involving something called a divergent 
infinite series, more specifically the Grandi Series, I - I + I -
1 + 1 - 1 + 1 ... , which series sums to 0 if we compute it as 
(1- 1) + (1 - 1) + (1- 1) + ... but sums to 1 if we com
pute it as 1 + ( -1 + 1) + ( -1 + 1) + ( -1 + 1) ... , with 

21 IYI Let's explicitize at the outset that the 'you might recall's and 'it 

goes without saying's and so on are not tics but rhetorical gambits whose 

aim is to reduce annoyance in those readers who are already familiar with 

whatever's being discussed. No particular experience or recall of college 

math is actually required for this booklet; but it seems only reasonable to 

assume that some readers will have strong math backgrounds, and only 

polite to acknowledge this from time to time. As was briefly mentioned in 

the Foreword, the rhetoric of tech writing is fraught with conundra about 

various different readers' expertise-levels and confusion-v.-annoyance 

curves. None of this is your problem, of course-at least not directly. 
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the kicker being that, since both computations are 
mathematically licit, the series' 'real' sum appears to be 
both 1 and not-1, which by LEM is impossible. You may 
or may not further recall, however,22 that the Grandi Series 
happens to be a particular subtype of divergent infinite 
series known as an oscillating series, and that as such it's an 
object lesson in stipulation for partial sums (symbolized sn), 

with the relevant symbolism being '1 + !,( -1 t where Sn = 0 
for even n and s" = - 1 for odd n' -which symbolism 
appears so legalistically arcane and clunky precisely because 
it has to be designed to avoid crevasses like the Lamp 
Paradox. 

Or there are antinomies that revolve around co not as a 
natural-language concept or a numerical terrain vague but 
merely as a feature of geometry, and can be represented in 
simple pictures, and can't just be stipulated away. Take the 
matter of points and lines. It's a given that any line includes 
infinitely many points. A point, recall from school, is "an ele
ment of geometry having position but no extension," mean
ing that a point is an abstraction, pure location. But if a line is 
composed entirely of points, and points have no extension, 
how can a line have extension? Which all lines by definition 
do. The answer seems to have to do with co, but how can even 
oo X 0 equal anything more than O? 

22 The following clause isn't quite m, but to follow it entirely you 

probably would need to have had some college math, which if you haven't, 

don't worry about anything more here than the way the symbolism has to 

get freighted with stipulations. (IYI And if you have had Cale I-II and are 

noticing that our symbolism is somewhat nonstandard, again don't fret

it's mostly because none of the relevant symbols has been defined yet.) 
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Here's an even worse one. All you need is Euclid and a 
ruler. Draw a line like so: 

p Q R 

where the line segment PQ is three times longer than the seg
ment QR. Since line segments are composed of points, it 
stands to reason that there should be three times as many 
points on PQ as on QR. But it turns out there are exactly as 
many in both. You can see it. Turn the line into the right 
triangle QPR by rotating PQ up and over so that P is right 
over R and then drawing the line segment PR: 

p 

Q R 

Then recall that, via Euclid's Parallel Axiom, 23 through any 
point on the segment PQ there will exist exactly one line par
allel to the segment PR: 

p 

Q R 

and that this line will hit the segment QR at exactly one 
point. The same is true for every single point on PQ-simply 

23 m = Def. 23 in Book I of the Elements. 
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draw a line parallel to PR that hits PQ at this point, and the 
line will hit QR at one and only point: 

p 

Q R 

with no duplications and no points left over, meaning that 
for every point on PQ there is a corresponding point on QR, 
meaning there are exactly as many points on QR as on PQ, 
even though PQ = 3(QR). 

You can generate a similar paradox with circles and make 
a concentric duo where the radius of the big circle is twice 
that of the one inside.24 Since any circle's circumference is a 
direct function of its radius, the big one's circumference will 
be twice the size of the little one's. And a circumference is 
also a line, so there ought to be twice as many points on the 
big circle's circumference. But no: since the two circles have a 
common center, simply drawing in some sample radii estab
lishes that any radius that intersects the larger circle at a point 
N will intersect the little circle at one and only one corre
sponding point N1, with no redundancies or remainder: 

A 

24 m This one is related to something called Aristotle's Wheel, which is 

a whole story in itself. 
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thereby demonstrating that the number of points on both 
circles' circumferences is the same. 

These are real problems, not just irksome or counterintu
itive but mathematically profound. G. F. L. P. Cantor solved 
them all, more or less. But of course the natural-language 
'solve' can mean different things. As mentioned, one way in 
math to take care of destabilizing problems is to legislate 
them out of existence-by banishing certain kinds of math 
entities and/or by loading theorems with stipulations and 
exclusions designed to head off crazy results. Prior to the 
invention of transfinite math, this was the way most para
doxes of oo were handled. You 'solved' them by first fudging 
the distinction between a paradox and a contradiction, and 
then by applying a kind of metaphysical reductio: if allowing 
infinite quantities like the number of points on a line or the 
set of all integers led to paradoxical conclusions, there must 
be something inherently wrong or nonsensical about infinite 
quantities, and thus oo-related entities couldn't really 'exist' 
in a mathematical sense. This was essentially the argument 
deployed against, e.g., the famous Paradox of Galileo in the 
1600s. Here's the Paradox of Galileo. Euclid's 5th Axiom dic
tates that "the whole is always greater than the part," which 
seems pretty unassailable. It's also obvious that while every 
perfect square (viz. 1, 4, 9, 16, 25, ... ) is an integer, not every 
integer is a perfect square. In other words the set of all perfect 
squares is but a part of, and so by Euclid's 5th smaller than, 
the set of all integers. The trouble is that the same sort of 
equality-via-correspondence we saw with PQ/QR and the 
two circles can be set up here. Because while not every integer 
is a perfect square, every integer does happen to be the square 
root of a perfect square-2 of 4, 3 of 9, 4 of 16, 912 of 
831,744, and so on. Pictorially, you can line up the two sets 
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and demonstrate a perfect and inexhaustible one-to-one cor
respondence between their members25

: 

1 2 3 

t t t 
4 5 

t t 
I 4 9 16 25 

911 

t 
912 

t 
829,921 831,744 

n ... 

The upshot of the Paradox of Galileo is thus that Euclid's 
5th Axiom-an indispensable part of basic math, not to 
mention an obvious truth borne out by every single kind of 
set we can ever see or count-is contradicted by the infinite 
sets of all integers and all perfect squares. Given this situation, 
there are two ways to go. The standard way, as mentioned, is to 
declare infinite sets the math equivalent of unicorns or the 
'nothing' Alice sees on the road.26 The other-which is revo
lutionary, both intellectually and psychologically-is to treat 
Galileo's paradoxical equivalence not as a contradiction but 
as a description of a certain new kind of mathematical entity 
that's so abstract and strange it doesn't conform to math's 
normal rules and requires special treatment. I.e., it is to point 
out (as did guess who) that "The fundamental flaw of all 
so-called proofs of the impossibility of infinite numbers is 
that they attribute to these numbers all the properties of 
finite numbers, whereas the infinite numbers ... constitute 
an entirely new type of number, a type whose nature should 
be an object of research instead of arbitrary prejudice." 

25 m As we'll see in §7, a one-to-one correspondence between their 

members is now actually the definition of equality between two sets. 
26 IYI That's a little crude. The real way math neutered oo was based on 

a certain metaphysical distinction drawn by Aristotle in opposition to 
Zeno, all of which we'll get to. 
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Except on the other hand such an attitude could be not 
revolutionary but merely insane. 27 Rather like taking the fact 
that nobody's ever once seen a unicorn and claiming that this 
is not an indication that unicorns don't really exist but rather 
evidence that unicorns constitute a whole new type of animal 
with the unique property of invisibility. Here of course we get 
the Fine Line Between Brilliance and Madness that modern 
writers/filmmakers dine out on. The truth is that all manner 
of strange, non-directly-observable entities such as 0, nega
tive integers, irrational numbers, etc. originally entered math 
under the same sort of insanity/incoherence cloud but are 
now totally accepted, even essential. At the same time, there 
have been plenty of other innovations that really were insane 
or unworkable and got laughed out of town, mathematically 
speaking, and we laymen never hear of them. 

Just because something's a Fine Line doesn't mean it isn't a 
line, though. Mathematical thinking is abstract, but it's also 
thoroughly private-sector and results-oriented. The differ
ence between a brilliant, revolutionary mathematical theory 
and a wacko one lies, therefore, in what-all can be done with 
it, in whether or not it yields significant results. Here's 
G. H. Hardy explaining 'significant results': 

We may say, roughly, that a mathematical idea is 'signifi
cant' if it can be connected, in a natural and illuminating 

27 It's only fair to point out that Cantor made his share of wacky-sounding 

pronouncements in the controversy over infinite sets, many with an omi

nously grandiose religious flavor, as in "I entertain no doubts as to the truth 

of the transfinites, which I have recognized with God's help,'' or "The fear of 

infinity is a form of myopia that destroys the possibility of seeing the actual 

infinite, even though it in its highest form has created and sustains us." 
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way, with a large complex of other mathematical ideas. 
Thus a serious mathematical theorem, a theorem which 
connects significant ideas, is likely to lead to important 
advances in mathematics itself and even in other sciences. 

G. F. L. P. Cantor's theories of infinite sets and transfinite 
numbers end up being significant in precisely this way. Part of 
the reason is that Cantor was an extremely fine working math
ematician and derived ingenious proofs of the important for
mal features that made his ideas real theories instead of just 
bold hypotheses. But there are other reasons, too. Galileo 
himself had hypothesized that the real upshot of his Paradox 
was that "the attributes 'equal,' 'greater,' and 'less' are not 
applicable to infinite, but only to finite quantities." No one 
took this seriously, though, and not because of stupidity
math does not tend to be rife with stupid or dosed-minded 
people. The time was literally not right for Galileo's sugges
tion; nor were there yet the right mathematical tools for mak
ing it a real theory even if Galileo' d wanted to ... which he 
didn't, from which fact it would be wrong to conclude that he 
wasn't just as farsighted or brilliant as G. Cantor. Like most of 
the giants who revolutionize math or science, Cantor was 
100% a man of his time and place, and his accomplishments 
were the usual conjunction of extraordinary personal bril
liance and courage28 and just the right context of general 

28 Naturally, the significant results that legitimize a mathematical theory 

take time to derive, and then even more time to be fully accepted, and of 

course throughout this time the Insanity-v.-Genius question remains unde

cided, probably even for the mathematician himself, so that he's developing 

his theory and cooking his proofs under conditions of enormous personal 

stress and doubt, and sometimes isn't even vindicated in his own lifetime, etc. 
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problems and conditions that, in hindsight, tend to make 
intellectual advances seem inevitable and their authors almost 

incidental. 
To put it another way, math is pyramidical; Cantor didn't 

just suddenly come out of nowhere. Real appreciation there

fore requires understanding the concepts and problems that 

gave rise to set theory and made transfinite math significant 
in Hardy's sense. This takes a while, but since the discussion 

is itself pyramidical we can proceed in a more or less ordered 
way, and the whole thing won't be nearly as abstract and dis

cursive as this warmup. 

§2a. Now we're really starting. There are two ways 

to trace out the context of Cantorian set theory. The first is to 
talk about the abstract intertwined dance of infinity and limit 

throughout math's evolution. The second is to examine 
math's historical struggle with representing continuity, mean

ing the smooth-flowing and/or densely successive aspects 
of motion and real-world processes. Anyone with even the 

vaguest memory of college math will recall that continuity 

and oo/limit are pretty much the fundament of the calculus, 
and might also recall that they have their general origins in 

the metaphysics of the ancient Greeks and their particular 
matrix in Zeno of Elea ( c. 490-435 BCE, who died with his 

teeth literally still in the ear of Elea's despotic ruler Nearchus I 

(long story)), whose eponymous paradoxes pulled the starter

rope on everything. 

A few Attic facts at the outset. First, Greek math was 

abstract all right, but it had its roots deep in Babylo-Egyptian 
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praxis. There is no real difference, for the Greeks, between 
arithmetical entities and geometric figures, between e.g. the 
number 5 and a line five units long. Nor, second, are there 
any clear distinctions for the Greeks between mathematics, 
metaphysics, and religion; in many respects they were all the 
same thing. Third, our own age and culture's dislike of lim
its-as in 'a limited man,' 'IF YOUR VOCABULARY IS LIMITED, 

YOUR CHANCES FOR SUCCESS ARE LIMITED,' etc.-would have 
been incomprehensible to the ancient Greeks. Suffice to say 
they liked limits a lot, and a straightforward consequence of 
this is their distaste for/distrust of oo. The Hellenic term to apei
ron means not only infinitely long/large but also undefinable, 
hopelessly complex, the that-which-cannot-be-handled. 1 

To apeiron also and most famously refers to the unbounded 
natureless chaos from which creation sprang. Anaximander 
(610-545 BCE), the first of the pre-Socratics to use the term in 
his metaphysics, basically defines it as "the unlimited substra
tum from which the world derived." And the 'unlimited' here 
means not only endless and inexhaustible but formless, lack
ing all boundaries and distinctions and specific qualities. Sort 
of the Void, except what it's primarily devoid of is form. 2 

And this, for the Greeks, is not good. Here's a definitive quo
tation from Aristotle, that font of definitive quotations: 
"[T}he essence of the infinite is privation, not perfection but 
the absence of limit." The point being that in abstracting 
away all limits to get co you are throwing the baby out as 

1 IYI The term to apeiron apparently originated in Greek tragedy, where 

it referred to garments or binds 'in which one is entangled past escape'. 
2 M Probably worth observing here that Genesis 1:2's "The earth was with

out form and void" is a thoroughly Greek way to characterize pre-Creation. 
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well: no limit means no form, and no form means chaos, 
ugliness, a mess. Note thus Attic Fact Four, the ubiquitous 
and essential aestheticism of the Greek intellect. Messiness 
and ugliness were the ultimate malum in se, the sure sign 
that something was wrong with a concept, in much the same 
way that disproportion or messiness was impermissible in 
Greek art.3 

Pythagoras of Samas (570-500 BCE) is crucial in all kinds 
of ways to the history of oo. (Actually it's more accurate to say 
'the Divine Brotherhood of Pythagoras' or at least 'the 
Pythagoreans,' because oo-wise the man was less important 
than the sect.) It was Pythagorean metaphysics that explicitly 
combined Anaximander's to apeiron with the principle of 
limit ( = Gr. peras) that lends structure and order-the possi
bility of form-to the primal Void. The Divine Brotherhood 
of P., who as is well-known made a whole religion of Num
ber, posited this limit as mathematical, geometric. It is the 
operations of peras on to apeiron that produce the geometri
cal dimensions of the concrete world: to apeiron limited once 
produces the geometric point, limited twice produces the 
line, three times the plane, and so on. However odd or primi
tive this might seem, it was extremely important, and so were 
the Pythagoreans. Their peras-based cosmology meant that 
the genesis of numbers was the genesis of the world. The 
D.B.P. were, yes, legendarily eccentric, as in their seasonal 
rules about sex or Pythagoras's pathological hatred of 

3 N.B. that this Hellenic aestheticism has never died out in math, as in 

the way a great proof or method is called 'elegant,' or Hardy's Apology's 
oft-quoted "Beauty is the first test; there is no permanent place in the 

world for ugly mathematics." 
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legumes. But they were the first people to regard, and 
revere, numbers as abstractions. The centrality of the number 
10 to their religion, for example, was based not on finger
or toe-factors but on IO's status as the perfect sum of 
1 + 2 + 3 + 4. 

The D.B.P. were also the first philosophers explicitly to 
address the metaphysical relation between abstract math
ematical realities and concrete empirical realities. Their basic 
position was that mathematical reality and the concrete 
world were the same, or rather that empirical reality was a 
sort of shadow or projection of abstract math.4 Moreover, 
many of their arguments for the primacy of number were 
based on the observed fact that purely formal mathematical 
relationships had striking implications for real-world phe
nomena, a famous example being how the D.B.P. abstracted 

the Golden Mean ( 1 ~ x = ~, which solves to roughly ;~) 
from seashells' whelks and trees' rings and promulgated its 
use in architecture. As mentioned, some of these math/world 
connections had been known to earlier cultures like the 
Egyptians--or maybe rather 'used by them' would be better, 
since the Egyptians had zero interest in what the connections 
actually were, or meant. A couple more examples. In practice, 
the Egyptians had used what we now call the Pythagorean 

4 M In case you're noticing that this is a pretty Platonic-sounding 

description, be apprised that even though Plato lived a century after Pythago
ras, there's good evidence that he came into close contact with later mem

bers of the D.B.P. during his travels through Greek-held southern Italy, 

and that their metaphysics of math underlie Plato's own Theory of Forms, 
re which see just below. 
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Theorem in engineering and surveying along the Nile; but it 
was Pythagoras who made it an actual Theorem, and proved 
it. Plenty of pre-Greek cultures also played music, but it was 
the D.B.P. who discovered the concepts of the octave, the 
perfect fifth, etc., by observing that certain musical intervals 
always corresponded to certain ratios in the lengths of 
plucked strings-2 to 1, 3 to 2, and so on. Since strings were 
lines and lines were geometric/mathematical entities,5 the 
ratios of strings' lengths was the same as the ratios of integers, 
a.k.a. rational numbers, which happen to be the fundamental 
entities of Pythagorean metaphysics. 

Etc. etc., the point being that the D.B.P.'s attempts to 
articulate the connections between mathematical reality and 
the physical world were part of the larger project of pre
Socratic philosophy, which was basically to give a rational, 
nonmythopoeic account of what was real and where it came 
from. Maybe even more important than the D.B.P., oo-wise, 
is the protomystic Parmenides of Elea (c. 515-? BCE), not only 
because his distinction between the 'Way of Truth' and 'Way 
of Seeming' framed the terms of Greek metaphysics and 
(again) influenced Plato, but because Parmenides' #1 student 
and defender was the aforementioned Zeno, the most 
fiendishly clever and upsetting Greek philosopher ever (who 
can be seen actually kicking Socrates' ass, argumentatively 
speaking, in Plato's Parmenides). Zeno's arguments for Par
menidean metaphysics took the form-again as mentioned
of some of the most profound and nutcrunching paradoxes 
in world history. In support of these crunchers' relevance 

5 The Egyptians' own concept of 'line,' on the other hand, had been just 
a stretched rope at the edge of somebody's property. 
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to our overall purpose, here is another nice B. Russell 
quotation: 

In this capricious world, nothing is more capricious than 
posthumous fame. One of the most notable examples of 
posterity's lack of judgment is the Eleatic Zeno [ ... ],who 
may be regarded as the founder of the philosophy of infin
ity. He invented four arguments, all immeasurably subtle 
and profound, to prove that motion is impossible, that 
Achilles can never overtake the tortoise, and that an arrow 
in flight is really at rest. After being refuted by Aristotle, 
and by every subsequent philosopher from that day to our 
own, these arguments were reinstated, and made the basis 
of a mathematical renaissance, by a German professor, 
who probably never dreamed of any connection between 
himself and Zeno. 

For the record, Parmenides' metaphysics-which is even 
wilder than the D.B.P.'s, and in retrospect seems more like 
Eastern religion than W estem philosophy-is describable as a 
kind of static monism,6 and Zeno's Paradoxes (of which there 
are really more than four) are accordingly directed against the 
reality of (1) plurality and (2) continuity. For present pur

poses we are concerned with (2), which for Zeno takes the 
form, as Russell mentions, of regular physical motion. 

Zeno's basic argument against the reality of motion is 
known as the Dichotomy. It looks very simple and is 
deployed in two of his most famous paradoxes, "The Race
track" and "Achilles v. the Tortoise." The Dichotomy later 
gets used and discussed, with all sorts of different setups and 

6 = roughly 'All Is One'+ 'Nothing Changes'. 
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agendas, by Plato, Aristotle, Agrippa, Plotinus, St. Thomas, 
Leibniz, J. S. Mill, F. H. Bradley, and W. James (to say noth
ing of D. Hofstadter in Godel, Escher, Bach). It runs thus.7 

You're standing at a corner and the light changes and you try 
to cross the street. Note the operative 'try to'. Because before 
you can get all the way across the street, you obviously have 
to get halfway across. And before you can get halfway across, 
you have to get halfway to that halfway point. This is just 
common sense. And before you can get to the halfway-to
the-halfway-point point, you obviously have to get halfway to 
the halfway-to-the-halfway-point point, and so on. And on. 
Put a little more sexily, the paradox is that a pedestrian 
cannot move from point A to point B without traversing all 

successive subintervals of AB, each subinterval equaling ~~ 

where n's values compose the sequence (1, 2, 3, 4, 5, 6, ... ), 
with the ' ... ' of course meaning the sequence has no finite 
end. Goes on forever. This is the dreaded regressus in infini
tum, a.k.a. the Vicious Infinite Regress or VIR. What makes it 
vicious here is that you're required to complete an infinite 
number of actions before attaining your goal, which-since 
the whole point of 'infinite' is that there's no end to the num
ber of these actions-renders the goal logically impossible. 
Meaning you can't cross the street. 

The standard way to schematize the Dichotomy is usually: 

(1) In order to traverse the interval AB you must first 

traverse all the subintervals~~ where n = 1, 2, 3, 4, 5, 
6, .... 

7 
The following should not be classed IYI even if you know the 

Dichotomy already, since the discussion here is rather specially tailored. 
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(2) There are infinitely many such subintervals. 
(3) It is impossible to traverse infinitely many subinter

vals in a finite amount of time. 
( 4) Therefore, it is impossible to traverse AB. 

It goes without saying that the interval AB doesn't have to be 
a very wide street, or even a street at all. The Dichotomy 

applies to any kind of continuous motion. Dr. G. in class 
used to like to run the argument in terms of the DUI-like 
movement of your finger from your lap to the tip of your 
nose. And of course, as anybody who's ever successfully 
crossed a street or touched his nose is aware, there has got to 
be something fishy about Zeno's argument. Finding and 
articulating that fishiness is a whole other matter. We have to 
be careful, too; there's more than one way to be wrong. If 
you've had some college math, for instance, it may be tempt
ing to say that the Dichotomy's step (2) conceals a simple fal
lacy, namely the assumption that the sum of an infinite series 

must itself be infinite. You might recall that step (l)'s ~~ 

is simply another way to represent the geometric series 

1 1 1 1 V + 22 + 23 + 24 + · · ·, and that the correct formula for 

finding the sum of this geometric series is ( 
1 
~ r) , where a is 

the series' first term and r is the common ratio, and that here 
1 

. 1 d . d 2 1 . h' h . a IS 2 an so IS r, an 
1 

= , m w IC case It appears 
(1- 2) 

that streets can be crossed and noses touched with no prob
lem, and thus that the Dichotomy is really just a tricky Word 
Problem and not a paradox at all, except maybe for civilizations 
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too crude and benighted to know the formula for summing a 
geometric series. 

Except this response won't do. Leave aside for the moment 
whether it's technically correct. What matters is that it's triv
ial; it represents what philosophers would call an impoverished 

view of Zeno's problem. For whence exactly (1 ~ r) as a 

formula for summing this geometric series? I.e., is the for
mula just a bit of lawyerly semantics designed to define 
certain paradoxes out of existence, or is it mathematically 
significant in Hardy's sense of 'significant'? And how do we 
determine which it is? 

Weirdly, the more standard classroom math you've had, the 
harder it's going to be to avoid answering in an impoverished 

way. Such as, e.g., validating (I ~ r) by observing, in the best 

Cale II tradition, 8 that the relevant geometric series here is a 
particular subtype of convergent infinite series, and that the 
sum of such a series is defined as the limit of the sequence of 
its partial sums (that is, if the sequence Sp s2, S:J, . • ., sn, ... 
of a series' partial sums tends to a limit S, then S is the sum of 
the series), and that sure enough, w/r/t the above series, 

Lim s" = 1, so ( a ) works just fine . . . in which case you 
n-->oo 1 - r 

will once again have answered Zeno's Dichotomy in a way 
that is complex, formally sexy, technically correct, and deeply 

8 
meaning, again, that the following will make I 00% sense only if you've 

had the relevant math, which again if you haven't don't worry-what's 

important is the overall form of the reasoning, which you can get without 

knowing the specific terms/symbols. (M In fact, the terms/symbols in play 

here are all going to get defined below, but not until we really need them.) 
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trivial. Along the lines of 'Because it's illegal' as an answer to 

'Why is it wrong to kill?' 
The trouble with college math classes-which classes 

consist almost entirely in the rhythmic ingestion and regurgi
tation of abstract information, and are paced in such a way as 
to maximize this reciprocal data-flow-is that their sheer 
surface-level difficulty can fool us into thinking we really 
know something when all we really 'know' is abstract formu
las and rules for their deployment. Rarely do math classes 
ever tell us whether a certain formula is truly significant, or 
why, or where it came from, or what was at stake.9 There's 
clearly a difference between being able to use a formula cor
rectly and really knowing how to solve a problem, knowing 
why a problem is an actual mathematical problem and not 
just an exercise. In this regard see yet another part of the 
B. Russell , on Zeno, 10 this time with emphases supplied: 

Zeno was concerned, as a matter of fact, with three prob
lems, each presented by motion, but each more abstract 
than motion, and capable of purely arithmetical treatment. 
These are the problems of the infinitesimal, the infinite, and 
continuity. To state clearly the difficulties involved, was to 

acwmplish perhaps the hardest part of the philosopher's task. 

9 And, of course, rarely do students think to ask-the formulas alone 

take so much work to 'understand' (i.e., to be able to solve problems cor

rectly with), we often aren't aware that we don't understand them at all. 

That we end up not even knowing that we don't know is the really insidi

ous part of most math classes. 
10 IYI Russell gets quoted so much here because his prose on all this is 

extremely pellucid and fine-plus notice the way he, like the Greeks, 

makes no real distinction between math and philosophy. 



Everything and More 53 

And ' ( 
1 
~ r)' fails, without a great deal of context and as it were 

motivation, to state clearly the difficulties involved. Stating 
these difficulties clearly is, in fact, the whole and only diffi

culty involved here (and if you can now feel the slight strain 
and/or headache starting, you'll know we're in Zeno's real 
territory). 

First, to save at least 103 words, have a refresher-type look at 
the following two rough graphs, one of the divergent sequence11 

for 2" and the other of the convergent sequence for Jn: 

Exhibit 2a( l) 

Divergent = 2" 
20 

Ia 

16 

14 

12 

2" 10 

a 
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0 
0 3 4 5 6 7 8 9 JO 

" 

11 m meaning one that doesn't have a finite limit. Convergence and 

divergence might not make complete sense until we talk about limits in §3c. 

All you need at this point is a rough idea of what divergence-v.-convergence 

involves, which the exhibits are supposed to enable. 
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2 

Exhibit 2a(2) 

Convergent= .!.. 
2" 

3 4 
n 

6 7 8 9 10 

One of the real contextual difficulties surrounding the 
Dichotomy was that the Greeks did not have or use 0 in their 
math (0 having been a very-late-Babylonian invention, purely 
practical and actuarial, c. 300 BCE). One could therefore say 
that since there was no recognized number/quantity for the 

. 1 1 I ( Exh'b. convergmg sequence 2, 4, S' ... to converge to q.v. I it 

2a(2)), Greek math lacked the conceptual equipment to com
prehend convergence, limits, partial sums, etc. This would be 
true in a way, 12 and not wholly trivial. 

12 IYI The ways in which it's not 100% true involve Eudoxus of Cnidos, 

who tends to get even less press than Zeno--q.v. §2d below. 



Everything and More 55 

Less trivial still is the aforementioned Greek dread of to apei
ron. Zeno was the first philosopher to use oo's black-hole
like logical qualities as an actual argumentative tool, viz. the 
Vicious Infinite Regress, which even today gets used in logical 
arguments as a reductio-grade method of proof. Example: In 
epistemology, the VIR is the easiest way to refute the common 
claim that in order to really know something you have to know 
that you know it. Like most VIR proofs, there's an evil-edged 
fun to this one. Let the variable x denote any fact or state of 
affairs precedable by the expletive 'that,' and restate the origi
nal claim as ( 1) 'In order to know that x, you must know that 
you know that x'. Since the whole expletive phrase 'that you 
know that x' qualifies as a fact or state of affairs, in the proof's 

next step you can simply expand the denotation of x so that 
now x = [you know that x] and then substitute it into the orig
inal claim, resulting mutatis mutandis in (2) 'In order to know 
that [you know that x], you must know that you know that 
[you know that x] ,' the next wholly valid x-extension of which 
then yields (3) 'In order to know that [you know that you 

know that x], you must know that you know that [you know 
that you know that x],' and so on, ad inf., requiring you to sat
isfy an endless number of preconditions for knowing anything. 

(IYI The VIR is so powerful a tool that you can easily use it 
to annoy professional competitors or infuriate your partner 
in domestic conflicts, or (worse) to drive yourself crazy in 
bed in the morning over, e.g., any kind of relation between 
two things or terms, like when we say that 2 and 4 are related 
by the function y = x2

, or that if clouds cause rain then 
clouds and rain stand in a causal relation. If you consider the 
idea in the abstract and ask, w/r/t any relation, whether this 
relation is itself related to the two terms it relates, the answer 
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is inescapably yes (since it's impossible to see how a relation 
can connect two terms unless it has its own relation to each 
one, the way a bridge between two riverbanks has got to be 
connected to each bank), in which case the relation between, 
say, clouds and rain actually entails two more relations-viz. 
those between (I) clouds and the relation and (2) rain and 
the relation-each of which latter relations obviously then 
entails two more on either side, and so on, ad inf .... which is 
not a fun or productive abstract path to venture down in the 
A.M. at all, especially since the geometric series of relations here 
is divergent rather than convergent, and as such it's connected 
to all kinds of especially dreadful and modern divergent series 
like the exponential doublings of cancer, nuclear fission, epi
demiology, & c. Worth noticing also is that hideous divergent 
VIRs like those above always involve the metaphysics of abstrac
tions, such as 'relation' or 'knowledge'. It's like some fissure or 
crevasse always opens up in the move from particular cases of 
knowing/relating to knowledge/relation in abstractus.) 

Zeno himself is almost fetishistically attached to the diver
gent VIR and uses it in several of his lesser-known paradoxes. 
Here is a specifically anti-Pythagorean Z.P.13 contra the idea 

13 IYI All anybody knows of Zeno's Paradoxes is from secondary 

sources, since either Zeno didn't write anything or it's all been lost. The 

above paradox appears most famously in §209a of Aristotle's Physicr-and 

notice how this one too revolves around issues in the ontology of abstrac

tions, particularly in the move from steps (1) to (2). 

Also: If you are the sort of person who can keep seemingly irrelevant 

things in your head for several pages, then observe now that the exact same 

metaphysica1 slipperinesses in this Z.P. will reappear w/r/t the Dichotomy 
in questions about what exactly a mathematical point is, like whether a 

point is a geometrical abstraction, or an actual physica1 location, or both. 
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that anything can really be in a particular location, which in 
simplified form is schematized: 

( 1) Whatever exists is in a location. 
(2) Therefore, location exists. 
(3) But by (1) and (2), location must be in a location, and 
(4) By (1)-(3), location's location must itself be in a 

location, and ... 
(5) ... So on ad inf. 

This one's rather easier to see the gears of, since the true Rus
sellian difficulty here is some slipperiness around 'to exist'. 
Actually, since ancient Greek didn't even have a special verb 
for existence, the relevant infinitive is the even slipperier 'to 
be'. On purely grammatical grounds, Zeno's argument can be 
accused of the classic Fallacy of Equivocation, 14 since 'to be' 
can have all sorts of different senses, as in 'I am frightened' v. 
'He is a Democrat' v. 'It is raining' v. 'r AM THAT I AM'. But you 
can see that pressing this case will (once again) lead quickly 
to the paradox's deeper questions, which questions here are 
(again once again) metaphysical: what exactly do these differ
ent senses of 'to be' mean, and in particular what does the 
more specialized sense 'to exist' mean, i.e. what sorts of 
things really do exist, and in what ways, and are there differ
ent kinds of existence for different kinds of things, and if 
there are then are some kinds of existence more basic or sub
stantial than other kinds? & c. 

14 As in: 

( l) Curiosity killed the cat. 

(2) The World's Largest Ball of Twine is a curiosity. 

(3) Therefore the World's Largest Ball ofTwine killed the cat. 
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You'll have noticed that we've run up against these sorts of 
questions a dozen times already and we're still 2,000+ years 
away from G. Cantor. They are the veritable bad penny in the 
Story of oo, and there's no way around them if you don't want 
just a bunch of abstract math-class vomitus on transfinite set 
theory. Deal. Right now is the time for a sketch of Plato's 
One Over Many argument, which is the classic treatment 
of just these questions as they apply to the related issue 
of predication. 

You might recall the 0.0.M., too, from school, in which 
case relax because this won't take long. For Plato, if two indi
viduals have some common attribute and so are describable15 

by the same predicate-'Tom is a man'; 'Dick is a man'
then there is something in virtue of which Tom and Dick 
(together with all other referents of the predicate nominative 
'man') have this common attribute. This something is the 
ideal Form Man, which Form is what really, ultimately exists, 
whereas individual men are just temporal appearances of the 
Form, with a kind of borrowed or derivative existence, like 
shadows or projected images. That's a very simplified version 
of the 0.0.M., but not a distorted one-and even at this level 
it should not be hard to see the influences of Pythagoras and 
Parmenides on Plato's ontological Theory of Forms, which 
the 0.0.M. is an obvious part of. 

Here's where the truth gets a little complicated. As seems 
to happen a lot, the complication involves Aristotle. It's true 
that the first mention of the 0.0.M. is in Plato's Parmenides, 
but in fact what made the argument famous is Aristotle's 

15 via the special predicative (or 'linking') form of 'to be,' which is why 

predication here is a related issue. 
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Metaphysics, 16 in which the 0.0.M. is discussed at great 
length so that Aristotle can try to demolish it. There's several 
shelves worth of context here that we can mostly skip. 17 

What's strange (for reasons that are upcoming) is that Aris
totle's best-known argument against Plato's Theory of Forms 
is virtually textbook Zeno. This argument, which is usually 
called the Third Man, is in effect a divergent-VIR-type reduc
tio on the 0.0.M. After observing that both individual men 
and the Form Man obviously share some predicable quality 
or attribute, Aristotle points out that there must then be yet 
another metaphysical Form-say, Man'-that comprises this 
common attribute, which entails still another Form, Man", to 
comprise the predicable commonality between Man' and 
[Man+ men], & c. & c. ad inf. 

Whether or not the Third Man strikes you as a valid refu
tation of the 0.0.M., you may well have already noticed that 
Plato's Theory of Forms18 has problems of its own, like for 
example a conspicuous goofiness when the 0.0.M. is applied to 
certain predicates-is there an ideal Form of left-handedness? of 
stupidity? of shit? Note, however, that Plato's theory has a lot 
more power and plausibility when applied to any kind of sys
tem that depends on formal relations between abstractions. 

16 IYI in Book I, Chs. 6 & 9. Plus of course this book's title is where 
the term originated; all it originally meant was that it was Aristotle's next 

treatise after the Physics. 
17 One or two factoids. Plato, ne Aristocles, is c. 427-347 BCE; Aristotle 

is 384-322 BCE (compare Socrates at c. 470--399 and Zeno at c. 490--435). 

Aristotle was a former star pupil in Plato's Academy, the motto over 

the front door of which happened to be LET NO ONE WHO IS IGNORANT OF 

GEOMETRY ENTER HERE. 
18 or at least our simplified version of it. 
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Like math. The conceptual move from 'five oranges' and 'five 
pennies' to the quantity five and the integer 5 is precisely 
Plato's move from 'man' and 'men' to Man. Recall, after all, 
Hardy's thrust in §le: when we use an expression like 
'2 + 3 = 5,' what we're expressing is a general truth whose 
generality depends on the total abstractness of the terms 
involved; we are really saying that two of anything plus three 
of anything will equal five of anything. 

Except we never actually say that. Instead we talk about the 
number 2 and the number 5, and about relations between 
these numbers. It's worth it-again-to point out that this 
could be just a semantic move, or it could be a metaphysical 
one, or both. And worth it to recall both §Id's thing about 
the predicative v. nominative senses of 'length' and 'gram,' 
and the different types of existence-claims involved in 'I see 
nothing on the road' and 'Man is by nature curious' and 'It is 
raining'; and then to consider, carefully, the existence-claims 
we're committing to when we talk about numbers. Is '5' just 
some kind of conceptual shorthand for all the actual quintuples 
in the world?19 It's pretty apparent that it's not, or at least that 
this isn't all '5' is, since there are lots of things about 5 (e.g. 
that 5 is prime, that S's square root is 2.236 ... ) that don't 
have anything to do with real-world quintuples but do have 
to do with a certain kind of entity called numbers and 
with their qualities and relations. Numbers' real, if strange, 

19 IYI This is a bit esoteric, but to head off possible objections to what 

follows: Yes, in some sense, if '5' is understood as referring to or picking 

out the set of all quintuples, then by Peano's Postulates the above is exactly 
what '5' is-although both 'set' and Peano's Postulates are themselves 

Cantor-dependent, so we are literally 2000 years ahead of ourselves. 
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existence is further suggested by the way many of these quali
ties and relations-such as for example that Vs cannot be 
expressed as either a finite decimal or a ratio of integers
seem like they really are discovered rather than made up or 
proposed and then defended. Most of us would be inclined to 
say that Vs is an irrational number even if nobody ever actu
ally proves that it is--Or at least it turns out that to say anything 
else is to be committed to a very complex and strange-looking 
theory of what numbers are. The whole issue here is of course 
incredibly hairy (which is one reason we're talking about it 
only in little contextual chunks), because not only is the 
question abstract but everything it's concerned with is an 
abstraction-existence, reality, number .... Although con
sider too for a moment how many levels of abstraction are 
involved in math itself. In arithmetic there's the abstraction 
of number; and then there's algebra, with a variable being a 
further-abstracted symbol for some number(s) and a func
tion being a precise but abstract relation between domains of 
variables; and then of course there's college math's deriva
tives and integrals of functions, and then integral equations 
involving unknown functions, and differential equations' 
families of functions, and complex functions {which are 
functions of functions), and definite integrals calculated as 
the difference between two integrals; and so on up through 
topology and tensor analysis and complex numbers and the 
complex plane and complex conjugates of matrices, etc. etc., 
the whole enterprise becoming such a towering baklava of 
abstractions and abstractions of abstractions that you pretty 
much have to pretend that everything you're manipulating is 
an actual, tangible thing or else you get so abstracted that you 
can't even sharpen your pencil, much less do any math. 
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The most relevant points with respect to all this are that 
the question of mathematical entities' ultimate reality is not 
just vexed but controversial, and that it was actually G. F. L. P .. 
Cantor's theories of oo that brought this controversy to a head 
in modern math. And that in this controversy, mathemati
cians who tend to regard mathematical quantities and rela
tions as metaphysically real are called Platonists,20 and at least 
now it's clear why, and the term can be thrown around later. 

§2b. The first really serious non-Platonist is Aristotle. 
What's odd and ironic about the Zenoish VIR Aristotle runs 
against Plato's metaphysics, however, is that Aristotle's is also 

the first and most important Greek attempt to refute Zeno's 
Paradoxes. This is mainly in Books III, VI, and VIII of the 
Physics and Book IX of the Metaphysics, whose discussions of 
Zeno will end up having a pernicious effect on the way math 
handles oo for the next two millennia. At the same time, Aris
totle does manage to articulate the root difficulties in at least 
some of Zeno's Paradoxes, as well as to pose dearly and for. 

20 M See for example this classic Platonist statement by C. Hermite 

(1822-1901, big number-theorist): 

I believe that the numbers and functions of analysis are not the arbi
trary product of our spirits: I believe that they exist outside of us with 

the same character of necessity as the objects of objective reality; and 

we discover them and study them as do the physicists, chemists and 

zoologists. 

As will probably emerge in various contexts below, B. P. Bolzano, 

R. Dedekind, and K. Godel are all Platonists, and G. F. L. P. Cantor is at. 

least a closet Platonist. 
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the first time some really vital oo-related questions that 
nobody until the 1800s will even try to answer in a rigorous 
way, viz.: 'What exactly does it mean to say that something is 
infinite?' and 'Of what sort of thing can we even coherently 
ask whether it's infinite or not?' 

W/r/t these central questions, you might recall Aristotle's 
famous predilection for dividing and classifying-he literally 
put the 'analytic' in analytic philosophy. See for instance this 
snippet from Physics Vi's discussion of the Dichotomy: "For 
there are two senses in which length and time and generally 
anything continuous are called 'infinite': they are called so 
either in respect of divisibility or in respect of their extremi
ties [ = size]," which happens to be the first time anyone had 
ever pointed out that there's more than one sense to 'infi
nite'. Aristotle mainly wants to distinguish between a strong 
or quantitative sense, one meaning literally infinite size or 
length or duration, and a weaker sense comprising the infinite 
divisibility of a finite length. The really crucial distinction, he 
claims, involves time: "So while a thing in a finite time cannot 
come in contact with things quantitatively infinite, it can 
come in contact with things infinite in respect of divisibility: 
for in this sense the time itself is also infinite." 

Both the above quotations are from one of Aristotle's two 
main arguments against Zeno's Dichotomy as schematized 
on pp. 49-50. The target of this particular argument is 
premise (3)'s 'in a finite amount of time'. Aristotle's thrust is 
~at if Zeno gets to represent the interval AB as the sum of an 
lllfinite number of subintervals, the allotted time it takes to 

traverse AB should be represented the same way-say like f 
to get t AB t AB t AB 0 T' 4 to get to 4, B to get to B' etc. This argument 
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isn't all that helpful, though, since having an infinite amount 
of time to cross the street is no less contradictory of our 
actual ten-second street-crossing experiences than the origi
nal Dichotomy itself. Plus it's easy to construct versions of 
the Z.P. that don't explicitly require action or elapsed time. 
(For example, imagine a pie the first piece of which = half 
the whole pie and the next piece = half the first piece and dot 
dot dot ad inf.: is there a last piece of pie or not?) The point: 
Counterarguments about sequential time or subintervals or 
even actual human movements will always end up impover
ishing the Dichotomy and failing to state the real difficulties 
involved. Because Zeno can amend his presentation and 
simply say that being at A and then being at B requires you to 
occupy the infinitely many points corresponding to the 

AB AB AB AB 
sequence 2' 4' B' · · · 2"' · · " or, worse, that your ever 

really arriving at B entails your having already occupied an 
infinite sequence of points. And this seems quite clearly to 
contradict the idea of an infinite sequence: if 'oo' really means 
'without end,' then an infinite sequence is one where, how
ever many terms are taken, there are still others that remain 
to be taken. Meaning forget street-crossing or nose-touching: 
Zeno can run the whole cruncher in terms of abstract 
sequences and the fact that there is something inherently con
tradictory or paradoxical in the idea of an infinite sequence 
ever being completed. 

It is against this second, more abstract and damaging ver
sion of the Dichotomy that Aristotle advances his more influ
ential argument. This one depends on the semantics of 
'infinite,' too, but it's different, and focuses on the same sorts 
of predicative questions that arise in the 0.0.M. and Zeno's 
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Location Paradox. In both the Physics and the Metaphysics, 
Aristotle draws a distinction between two different things we 
can really mean when we use 'to be' + oo in a predicative sen

tence like 'There are an infinite number of points that must 
be occupied between A and B.' The distinction is only super
ficially grammatical; it's really a metaphysical one between 
two radically different existence-claims implicit in the sen

tence's 'are,' which apparently the Dichotomy depends on 
our not seeing. The distinction is between actuality and 
potentiality as predicable qualities; and Aristotle's general 
argument is that oo is a special type of thing that exists poten
tially but not actually, and that the word 'infinite' needs to be 
predicated of things accordingly, as the Dichotomy's confu
sion demonstrates. Specifically, Aristotle claims that no spa
tial extension (e.g. the intercurb interval AB) is 'actually 
infinite,' but that all such extensions are 'potentially infinite' 

in the sense of being infinitely divisible. 
This all gets extremely involved and complex, of course

entire careers are spent noodling over Aristotle's definitions. 
Suffice here to say that the actual-v.-potential-existence-of-oo 
issue is vital to our overall Story but admittedly tough to get a 
handle on. It doesn't help matters that Aristotle's own expla
nations and examples-

[I]t is as that which is building is to that which is capable of 
building, and the waking to the sleeping, and that which is 
seeing to that which has its eyes shut but has sight. Let actu
ality be defined by one member of this antithesis, and the 
potential by the other. But all things are not said in the same 
sense to exist actually, but only by analogy-as A is in B or to 
B, C is in D or to D; for some are as movement to potency, 
and the others as substance to some sort of matter ... 
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-are not exactly marvels of perspicuity. What he means by 
'potential' is emphatically not the sort of potentiality by 
which a girl is potentially a woman or an acorn an oak. It's 
rather more like the strange and abstract sort of potentiality by 
which a perfect copy of Michelangelo's Pieta21 potentially exists 
in a block of untouched marble. Or, oo-wise, the way anything 
that occurs cyclically (or, in A!s term, "successively")-like say 
its being 6:54 A.M., which happens every day like clockwork
is for Aristotle potentially infinite in the sense that an endless 
periodic recurrence of its being 6:54 A.M. is possible, whereas 
the set of all 6:54 A.M.s cannot be actually infinite because the 
6:54s are never all going to coexist; the periodic cycle is never 
going to be "complete [ d J. "22 

You can probably see how all this is going to play out w/r/t 
the Dichotomy. Again, though, it's a little tricky. The statue 
and 6:54 analogies won't quite work here. Yes, the interval 
AB and/or the set of all subintervals or points between A and 
B is not 'actually infinite' but only 'potentially infinite'; but 
here the sense in which Aristotle means 'AB is potentially 
infinite' is closer to the idea of, say, infinite precision in mea
surement. Which can be illustrated thusly. My eldest niece's 

21 as well, of course, as every other statue ever done, or thought of, or 

even not thought of .... 
22 m Like so much of Aristotle, this is not immediately dear. The thing 

here is that 'coexist' basically means 'all exist at the same time,' which the 

23-hour-and-59-minute gap between each recurrence of 6:54 A.M. (these 

gaps being packed into the very definition of '6:54 A.M.') renders impossi

ble. In essence, this Succession - Noncompletion thing is also Aristotle's 
argument for why capital-T Time is potentially but not actually infinite, 

which in turn preempts certain Lamp-type paradoxes about eternity and 

first and last moments. 
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current height, which is 38.S", can be fixed more precisely at 
38.53"; and with a more controlled environment and sophis
ticated equipment it could obviously be ascertained more 
and more exactly, to the 3rd, 11th, nth decimal place, with n 
being, potentially, 00-but only potentially oo, because in the 
real world there's obviously never going to be any way to 
achieve true infinite precision, even though 'in principle' it's 
possible. In pretty much just this way, for Aristotle AB is 'in 
principle' infinitely divisible, though this infinite division can 
never actually be performed in the real world. 

(IYI Final bit of complication: For the most part, what 
Aristotle calls "Number" (meaning mathematical quantities 
in general) apparently is potentially infinite not in the way 
measurement is potentially infinite but in the way the set of 
all 6:54 A.M.s is potentially infinite. For instance, the set of all 
integers is potentially infinite in the sense that there is no 
largest integer ("In the direction of largeness it is always pos
sible to think of a larger number"); but it is not actually infi
nite because the set doesn't exist as one completed entity. In 
other words, numbers for Aristotle compose a successive 
continuum: there are infinitely many but they never coexist 
("One thing can be taken after another endlessly").) 

As a refutation of Zeno's Dichotomy, the potential-oo-v.
actual-oo distinction isn't all that persuasive-evidently not 
even to Aristotle, whose own Third Man regressus looks like 
it could be dismissed as only potentially infinite. But the dis
tinction ends up being terribly important for the theory and 
practice of math. In brief, relegating oo to the status of poten
tiality allowed Western math either to discount infinite quan
tities or to justify their use, or sometimes both, depending on 
the agenda. The whole thing is very weird. On the one hand, 
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Aristotle's argument lent credence to the Greeks' rejections of 
oo and of the 'reality' of infinite series, and was a major reason 
why they didn't develop what we now know as calculus. 
On the other hand, granting infinite quantities at least an 
abstract or theoretical existence allowed some Greek mathe
maticians to use them in techniques that were extraordinarily 
close to being differential and integral calculus-so close that 
in retrospect it's amazing that it took 1700 years for actual 
calc to be invented. But, back on the first hand, a big reason it 
did take 1700 years was the metaphysical shadowland Aristotle's 
potentiality concept had banished oo to, which served to 
legitimate math's allergy to a concept it couldn't really ever 
handle anyway. 

Except-either back on the second hand or now on a third 
hand23-when G. W. Leibniz and I. Newton now really do 
introduce the calculus around 1700, it's essentially Aristotle's 
metaphysics that justifies their deployment of infinitesimals, 

f(x + dx) - f(x) 
e.g. dx in the infamous dx of freshman math. 

Please either recall or be informed that an infinitesimal quan
tity is somehow both close enough to 0 to be ignorable in addi
tion-i.e., x + dx = x-and distant enough from 0 to serve 
as a divisor in derivations like the above. Again very briefly, 
treating infinitesimals as potentially/theoretically existent 
quantities let mathematicians use them in calculations 
that had extraordinary real-world applications, since they 
were able to abstract and describe just the kinds of smooth 
continuous phenomena the world comprised. These infini
tesimals tum out to be a very big deal. Without them you can 

23 m and to anticipate some stuff that will be discussed at length in §4. 
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end up in crevasses like the .999 ... = I thing we glanced 
at in §le. As was then promised, the quickest way out of that 
one is to let x stand not for .999 . . . but for the quantity 
1 minus some infinitesimal, which let's call !. such that 

1 > (1 - !) > .999 .... Then you can run the same operations 
as before: 

lOx= 10 - (~) 

- x, which= I - (!), 

yields 9x = 9 - (!), 

in which case x still comes out to 1 - c!) and there's no 
nasty confabulation with 1.0. 

Except of course the question is whether it makes meta
physical or mathematical sense to posit the existence, whether 
actual or potential, of some quantity that is <I but still exceeds 
the infinite decimal .999 .... The issue is doubly abstract, since 
not only is .999 ... not a real-world-type quantity, it's some
thing we cannot really conceive of even as a mathematical 
entity; whatever relationship there is between .999 ... and 

(I - !) exists24 out past the nth decimal, a place no one and 

nothing can ever get to, not even in theory. So it's not clear 
whether we're just trading one kind of paradoxical crevasse 
for another. This is yet another type of question that is totally 
vexed before Weierstrass, Dedekind, and Cantor weigh in in 
the 1800s. 

Whatever you might think of Aristotle's potential-type 
ontology for oo, notice that he was at least right to home in on 

24 
so to speak. 
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words like 'point' and 'exist' in the nonpredicative sentence 
'There are [ = exist] an infinite number of intermediate points 
between A and B.' Just as in Zeno's Location Paradox, there's 
obviously some semantic shiftiness going on here. In the 
revised Dichotomy, the shiftiness lies in the implied corre
spondence between an abstract mathematical entity-here an 
infinite geometric series-and actual physical space. It's not 
clear that 'exist' is the more vulnerable target, though; there's 
a rather more obvious ambiguity in the semantics of 'point'. If 
A and Bare the two sides of a real-world street, then the noun 
phrase 'the infinite number of points between A and B' is 
using 'point' to denote a precise location in physical space. 
But in the noun phrase 'the infinite number of intermediate 

. d . d b AB ' ' . ' . c . th 'cal pomts es1gnate y zn' pomt is reiernng to a ma ematl 

abstraction, a dimensionless entity with 'position but no mag
nitude'. To save several pages of noodling that you can do in 
your own spare time,25 we'll simply observe here that travers
ing an infinite number of dimensionless mathematical points 
is not obviously paradoxical in the way that traversing an infi
nite number of physical-space points is. In this respect, Zeno's 
argument can look rather like §I's three-men-at-motel brain
teaser: the translation of an essentially mathematical situation 
into natural language somehow lulls us into forgetting that 
regular words can have vastly different senses and referents. 
Note, one more time, that this is exactly what the abstract 

25 Just as a sort of prompt: It's not trivial to observe that the ancient 

Greeks had no true conception of a dimensionless point, something with 

zero extension, since they didn't have 0. And maybe thus that in a sense 

the Dichotomy was just a symptom of the Greeks' real problem, which was 
their attempt to do abstract math using only concrete quantities. 
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symbolism and schemata of pure math are designed to avoid, 
and why technical math definitions are often so numbingly 
dense and complex. You want no room for ambiguity or equi
vocation. Mathematics, like child-measurement, is an enter
prise consecrated to the ideal of precision. 

Which all sounds very nice, except it turns out that there is 
also immense ambiguity-formal, logical, metaphysical-in 
many of the basic terms and concepts of math itself. In fact 
the more fundamental the math concept, the more difficult it 
usually is to define. This is itself a characteristic of formal 
systems. Most of math's definitions are built up out of other 
definitions; it's the really root stuff that has to be defined 
from scratch. Hopefully, and for reasons that have already 
been discussed, that scratch will have something to do with 
the world we all really live in. 

§2c. Back for a moment to the Zeno-and-semantics-of
'point' thing. The relation between a mathematical entity 
(e.g. a series, a geometric point) and actual physical space is 
also the relation of the discrete to the continuous. Think of a 
flagstone path v. a shiny smooth black asphalt road. Since 
what the Dichotomy tries to do is break a continuous physi
cal process down into an infinite series of discrete steps, it can 
be seen as history's first-ever attempt to represent continuity 
mathematically. It doesn't matter that Zeno was actually try
ing to show that continuity was impossible; he was still the 
first. He was also the first to recognize26 that there is more 

26 IYI the first in practice, anyway-Book VI of the Physics gets credit 
for making it explicit. 



72 DA YID FOSTER WALLACE 

than one species of~. The to apeiron of Greek cosmology is 
pure extension, infinite size; and the integral series 1, 2, 3, ... 
ascends and recedes toward this same kind of Big oo. Whereas 
on the other hand Zeno's Little oo appears to be nested amid 
and between ordinary integers. Which latter is naturally hard 
to conceive. 

It turns out that the most perspicuous way to represent 
these two different kinds of oo is with the good old Number 
Line, yet another feature of the ordinary 2nd-grade dass
room. 27 The Number Line is also another bequest from the 
Greeks, who you'll recall treated numbers and geometrical 
shapes as pretty much the same thing. (Euclid, for instance, 
rejected any piece of mathematical reasoning that could not 
be "constructed," meaning demonstrated geometrically.28

) 

The thing to appreciate about the humble Number Line's 
marriage of math and geometry is that it's also the perfect 
union of form and content. Because each number corre
sponds to a point, and because the Number Line both com
prises all the points and determines their order, numbers can 
be wholly defined by their place on the N.L. relative to other 
numbers' places. As in, 5 is the integer immediately to the 
right of 4 and to the left of 6, and to say that 5 + 2 = 7 is to 
say that 7 is two positions to the right of 5-that is, the math
ematical 'distance' between unequal numbers can be repre
sented and even calculated pictorially. Even without zero or 

27 IYI This is the thing that usually ran above the blackboard (or along 
the top of the back wall in classrooms that had U.S. Presidents' portraits 

running over the board) and looked kind oflike a thermometer on its side. 
28 MA completely different criterion of 'constructibility' for theorems 

will become important much later in §6f. 
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negative integers,29 and with 'point' being rather fuzzily 
defined by Euclid as "that which has no part," the Number 
Line is an immensely powerful tool. It also happens to be the 
perfect schematization of a continuum, meaning 'an entity 
or substance whose structure or distribution is continuous 
and unbroken,' and as such the N.L. embodies perfectly 
the antinomy of continuity that Zeno proposed and no one 
'til R. Dedekind could solve. For on the N.L. the following 
are both true: ( 1) Every point is next to another point; 
(2) Between any two points there is always another point. 

Even though everyone knows what it looks like, the Num
ber Line30 is reproduced here, starting at the 0 the Greeks 
didn't have because for now it doesn't matter: 

0 1 2 3 4 5 6 n 
oo, 

29 which latter the Greeks didn't have either. 
30 For sexy technical reasons that we'll get to, the Number Line is more 

properly called the Real Line if it also maps the irrational numbers. Mean

ing 'Real Line' as in all the real numbers. Note, by the way, that another 

term in mathematics for both the set of all real numbers and the Real Line 

happens to be: the Continuum. 

A certain amount of all this will probably get mentioned in the text, but at 

some point the N.L-v.-R.L. thing has to get nutshelled, and this is as good a 

place as any. Be apprised that the math-metaphysics of both kinds ofline are 

heavy indeed. They share three crucial features; the R.L. alone has a fourth. 

Both types of line are by definition infinitely extended; they are both infi

nitely dense ( = between any two points there's always another); and they are 

both 'successive,' or 'ordered' (which basically means that for any point n, 

(n - 1) < n < (n + 1)). The Real Line alone has the quality of being contin

uous, which here means it's got no gaps or holes in it. Note for later that it's 

the R.L.'s continuousness in this sense that ends up being the real crevasse for 

modem math. As mentioned in the main text just above, though, Zeno's 
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If the Big oo, the infinity of extension, lies at the endless right 
of the Number Line, the Little oo that Zeno exploits lies in the 
totally finite-looking interval between 0 and 1, which interval 
he reveals as containing an infinite number of inter-

d. . . h 1 1 1 Wh • ( me 1ate porn.ts, VIZ. t e sequence 2, 4, S, · · ·. at s more so 

to speak), it's clear that this infinity of in does not actually 

exhaust the points between 0 and 1, since it leaves out not 

1 . fi . lik 1 1 1 1 on y convergent m mte sequences e 6' lO'lS' 34 , · · ·, 

1
1
2 , 3

1
6 , A, 1 ~O, · · ·, etc., but the whole other infinite set of 

fractions k where xis an odd number. And when you con
sider that each of these latter fractions will correspond to its 
own infinite geometric sequence via the expansion of -\; ~.g. 

x 
1111 11 1 1 . 
3' 9' 27' 81' · · ·, S' 25' 125' 15625 · · ·, etc.-it appears that 

the finite N .L. interval 0-1 actually houses an infinity of 
infinities. Which is, to put it mildly, both metaphysically puz
zling and mathematically ambiguous-like would this be 00

2
, 

or oo'°, or what? 

Dichotomy requires nothing more than N.L.-grade density to create the 

paradox. And this is why the Dichotomy can so easily be recast to eliminate 

time/motion: its VIR involves traversing not real-world space but just the 

interval ~1 on the Nwnber Line. It is particularly this second, dense, inter

number type of oo that Aristotle wants to dismiss as merely 'potential'. 

FinaUy, please N.B. that in certain places between here and §6 we're 

going to speak as if the Number Line and the Real Line were the same 

thing, or as if the N .L. could also map irrationals. This will be for compli

cated reasons involving the translation of technical proofs into natural 

language, none of which are your problem except maybe to just keep the 
Real Line's special status in mind for several §s until it becomes important. 
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Except it gets worse, or better. Because all the prenominate 
numbers are rational. You probably already know that the 
adjective here derives from 'ratio' and that the phrase 'the 

rational numbers' refers to all those numbers expressible 
either as integers or as ratios of two integers (that is, as frac
tions). This is just review, but it's important. The discovery 

that not all numbers are rational was at least as hard on the 
Greek worldview as Zeno's Paradoxes. And it was particularly 
upsetting to the Divine Brotherhood of Pythagoras. Recall the 

Pythagorean convictions that everything is a mathematical 
quantity or ratio and that nothing infinite can really exist in 
the world (since (peras ~form) is what enables existence in 
the first place). 

Then recall the Pythagorean Theorem. As mentioned, an 
interesting bit of trivia is that the D.B.P. were not the 
true discoverers of this theorem; it actually shows up in Old 
Babylonian tablets as early as 2000 BCE. One reason it's called 
the Pythagorean Theorem is that it enabled the D.B.P.'s discov
ery of 'incommensurable magnitudes,' a.k.a. irrational numbers 

or ~urds.31 These numbers, which turn out to be inexpressible as 
finite quantities, were so lethal to Pythagorean metaphysics that 
their discovery became sort of the Greek version of Watergate. 
You will remember from childhood that the Pythagorean Theo
rem causes no problems with figures like the 3-4-5 right triangle 
of Intro Geometry, wherein the sum of the squares of 3 and 4 is a 

number whose own square root is rational. Understand, though, 

31 IYI The latter was Dr. Goris's preferred term because he maintained 

that it was so much more fun to say. If you said 'irrational number' he'd 
pretend he couldn't hear you, which if you know the etymology of 'surd' 

you'll see was itself a kind of in-joke. 
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that this 'squares of' stuff was literal for the Greeks. That is, in a 
3-4-5 triangle they treated each leg as the side of a square-

.. ~· ......... 

/// SL]··· ................... ; 
. . 
••·••••••••••• 4 ! 

.. -----------J . . . . 
: 3 : 

-and then added up the areas of the squares. There are two 
reasons this is noteworthy. The first was mentioned some
place above: while we now toss exponents and radicals 
around in abstractus, math problems for the Greeks were 
always formulated, and solved, geometrically. A rational num
ber was a literal ratio of two line-lengths; squaring something 
was constructing a square and taking its area. The second rea
son is that by most accounts it was a plain old humble square 
that started all the trouble. Consider specifically the familiar 
Unit Square, with sides equal to 1, and even more specifically 
the isosceles right triangle whose hypotenuse is the Unit 
Square's diagonal: 

S=l 

S=l 

What the D.B.P. realized (probably through actual and 
increasingly frantic measurements) is that no matter how 
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small a unit of measure is used, the side of a Unit Square is 
incommensurable with the diagonal. Meaning there is no rational 

number ~ such that ~ = ~· The quantity ~ was something 

the 0.B.P. eventually called arratos, 'the not-having-a-ratio,' 
or-since logos could mean both word and proportion
alogos, which thus meant both 'the nonproportional' and 'the 
unsayable'. 

The actual demonstration of the incommensurability of 

~ is another famous instance of reductio proof, and an 

especially nice one because it's very simple and requires only 
jr.-high math. So here it is. First, for reductio purposes, 

assume that 0 and S are commensurable. This means that ~ 

equals some ratio ~ where p and q are integers with no 

common factor greater than 1. We know by the Pythagorean 

Theorem that 0 2 = S2 + S2
, or 0 2 = 2S2

, which if ~ = ~ 

means that p2 = 2q 2• We know further that the square of any 
odd number is going to be odd and the square of any even 
number will be even (feel free to test these out). Plus we 
know that anything times 2 will obviously be even. This is all 
the ordnance we need. By LEM, either p is odd or p is even. If 
(1) p is odd, there's an immediate contradiction, since 2q 2 

has got to be even. But if (2) pis even, that means it's equal to 
some number times 2, say 2r, so plugging this equivalence 
back into the original p2 = 2q 2 yields 4r2 = 2q 2

, which 
reduces to 2r2 = q2

, which means q2 is even, which means 
q is even, which means both p and q are even, in which case 
they have a common factor greater than 1, which is again a 
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contradiction. (1) yields a contradiction; (2) yields a contra
diction; there is no (3). So D and Sare incommensurable. End 
proof.32 

The fact that rational numbers couldn't express something 
as quotidian as the diagonal of a square-not to mention 
other easily-constructed hypotenoid irrationals like Vs, Vs, 
etc.-was obviously destabilizing to the Pythagoreans' whole 
cosmogony. The coup de grace was apparently the discovery 
that their beloved Golden Mean was itself irrational, working 

out to ~(I +Vs) or 1.618034 .... There's all sorts of lurid 

apocrypha about the ends the D.B.P. supposedly went to to 
keep the existence33 of irrationals secret, which we can skip 
because much more important, historically and mathemati
cally, are surds themselves. They're important for at least 
three reasons. (1) Mathematically, irrational numbers are a 
direct consequence of abstraction. They're a whole level up 

from 5 oranges or i a pie; you don't encounter irrationals 

until you start generating abstract theorems like the P. T. And 
please note that they're really only a crevasse for pure math. 
The Egyptians et al. had run into irrationals in surveying and 
engineering, but because they cared only about practical 
applications they had no problem with treating a quantity 

like v2 as 1.4 or~· (2) Surds' discovery marked the first real 

divergence of math and geometry, the former now able 
to manufacture numbers that geometers couldn't actually 

32 M This also of course functions as a proof that v'2 is irrational, 

which was the way Dr. G. first presented it in class. 
33 so to speak. 
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measure. (3) It turns out that irrationals, just like Zeno's ]n's, 
are a consequence of trying to express and explain continuity 
w/r/t the Number Line. Irrational numbers are the reason 
why the Number Line isn't technically continuous. Like the 
Dichotomy's VIR, surds represent gaps or holes in the N.L., 
interstices through which the limitless chaos of co could enter 
and mess with the tidiness of Attic math. 

And it's not just a Greek problem. Because the big thing 
about irrational numbers is that they can't be represented by 
fractions; and yet if you try to express irrationals in decimal 
notation,34 then the sequence of digits after the decimal will 
be neither terminal (as in the rational decimals 2.0, 5.74) 
nor periodic (which means repeating in some kind of pattern, 
as in the rationals 0.333 ... = ~, 1.181818 ... = ~i, etc.). 35 

34 IYI itself an invention of the sixteenth century. 
35 It's also important to keep in mind that decimals are really just numer

als, meaning representations of numbers rather than numbers themselves. 

And that decimals also happen to be representations of convergent series, 

with e.g. '0.999 ... ' being equivalent to 1~0 + 1~ 1 + 1~2 + 1~3 + · · · · If 

you're able to see why the sum of this particular infinite series is 1.0, it's 

probably going to occur to you that the above-mentioned 0.999 ... = 1.0 

paradox isn't really a paradox at all but merely a consequence of the fact that 

there's always more than one way to represent any given number in decimal 

notation. In this case, the quantity 1 can be expressed either as 'l.000 ... 'or 

as '0.999 ... '. Both representations are valid, although you need a certain 

amount of college math to see why. (M Again, if you can keep stuff in your 

head for long intervals and many pages, know now that in §§ 6 and 7, 

G. Cantor is going to make ingenious use of this technical equivalence 

between 1.0 and .999 ... in a couple of his most famous proofs.) 
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Meaning that, for example, the decimal expression of V3 can 
be carried to 1.732, or 1.73205, or 1.7320508, or literally as long 
as you like ... and longer. Meaning in turn that a certain defi
nite point on the Number Line-viz. the point corresponding 
to that interval which, multiplied by itself, corresponds to the 
integer-point 3--cannot be named or expressed finitely. 36 

The finite interval 0-1 on the Number Line is thus even 
more inconceivably crowded. There's not only an infinite 
number of infinite sequences of fractions, but also an infi
nite number of surds,37 each of which is itself numerically 
inexpressible except as an infinite sequence of nonperiodic dec
imals. Let's pause to consider the vertiginous levels of abstrac
tion involved here. If the human CPU cannot apprehend or 
even really conceive of oo, it is now apparently being asked to 
countenance an infinity of oos, an infinite number of individ
ual members of which are themselves not finitely expressible, 
all in an interval so finite- and innocent-looking we use it in 
little kids' classrooms. All of which is just resoundingly weird. 

There are, of course, as many ways to handle this weird
ness as there are connotations for 'handle'. The Greeks,* for 
instance, simply refused to treat irrationals as numbers. They 
either categorized them as purely geometric lengths/areas and 
never used them in their math per se, or they literally ratio
nalized the use of surds by futzing with their arithmetic 

36 IYI Not numerically, anyway. Other ways to say the same thing: In 

the dental-sounding nomenclature of high-school math, the root of 3 is 

not fully extractable; in graphical terms, a line with an irrational slope will 
never hit any point corresponding to a Cartesian coordinate. 

37 To see intuitively that there are (at the very least) an infinite 

number of irrational points between 0 and l, consider the set of all points 

corresponding to ~ where n is irrational. 
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(example: the Pythagoreans' eventual trick was to write 2 as i; 
so they could treat Vz as ~).38 If their refusal to acknowledge 

the existence of numbers that their own mathematical rea
soning produced seems kind of bizarre, be apprised that up 
to the 1700s pretty much all the best mathematicians in 
Europe did the same thing,39 even as the fabled Scientific 
Revolution was starting to produce all kinds of results that 
required an arithmetic of irrationals. Not until the late nine
teenth century,* in fact, would anyone* come up with a rig
orous theory or even definition of irrationals. The best 
definition would come from R. Dedekind,* while the most 
comprehensive treatment of real numbers' status on the Line 
would be G. Cantor's. 

38 IYI This is ultimately why Greek trig and astronomy were such a 

mess-they tried to quantify continuous curves and sub-curve areas with 

only rational numbers. 
39 Q.v. this vividly appropriate quotation from the German algebrist 

M. Stifel, c. 1544: 

Since, in proving geometrical figures, when rational numbers fail us 

irrational numbers take their place and prove exactly those things 

which rational numbers could not prove, we are compelled to assert 

that they truly are numbers. On the other hand, other considera

tions compel us to deny that irrational numbers are numbers at all. 

To wit, when we seek to subject them to [decimal representation], 

we find that they flee away perpetually, so that not one of them can 

be apprehended precisely in itself. Now, that cannot be called a true 

number which is of such a nature that it lacks precision. Therefore, 

just as an infinite number is not a number, so an irrational number 

is not a true number, but lies hidden in a kind of cloud of infinity. 
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§2d. *UNAVOIDABLE BUT ULTIMATELY 

ID-GRADE INTERPOLATION 

Skip the following few pages if you like, but the asterisks in 
the above t tag stuff that historically speaking is not I 00% 
true. To wit: A certain student and protege of Plato known as 
Eudoxus of Cnidos ( 408-354 BCE) came very close indeed to 
providing a rigorous definition of irrationals, which Euclid 
then included as Definition 5 in Book V of the Elements. 

Eudoxus's definition involves geometric proportions and 
ratios-which is unsurprising, given that Greek math had 
been confronted by irrationals in the form of certain geomet
ric proportions that couldn't be expressed as ratios. Follow
ing the D.B.P.'s debacle, these incommensurable magnitudes 

seemed to be everywhere-like consider a rectangle two of 
whose sides equal the diagonal of the Unit Square: how were 
you supposed to calculate its area? More important, how 
could the Greeks distinguish cases of irrational-type incom
mensurability from cases where you simply have different 
species of magnitudes that can't be compared via ratios, 
like a line v. an area or an area v. a 3D volume? Eudoxus 
was actually the first Greek who even tried to define 'ratio' 
mathematically-

Magnitudes are said to be in the same ratio, the first to the 
second and the third to the fourth, when, if any equimultiples 
whatever be taken of the first and the third, and any equimul
tiples whatever of the second and the fourth, the former equi
muJtiples alike exceed, are alike equal to, or are alike less 
than, the latter equimuJtiples taken in corresponding order. 

-the opacity of which can be mitigated by translating some 
of the theorem's natural-language stuff into basic math 
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symbolism. Eudoxus's def. here states that, given~, f, and the 

integers a and b, ~ = f if and only if (ap < bq) ~ (ar < bs) 

and (ap = bq) ~ (ar = bs) and (ap > bq) ~ (ar > bs). This 
may at first look obvious or trivial40-see for instance how it 
resembles the rule about cross-multiplying fractions we all 
learned in 4th grade. But it really isn't trivial at all. Though 
Eudoxus meant it to apply only to geometric magnitudes rather 
than numbers per se, the definition works perfectly to iden
tify and distinguish rational numbers from irrational num
bers from immiscibly different geometric quantities, etc. Plus 
please notice now the way Eudoxus's definition is effectively 
able to operate on a whole infinite set, viz. that of all rational 
numbers.41 What Eudoxus does is use random integers to 
specify a division42 of the set of all rationals into two subsets: 
the set of all rationals for which ap ::s bq and the set of all 
rationals for which ap > bq. His is thus the first theorem to 
be able to range, comprehensively and specifically,43 over an 
entire infinite collection. In this respect it could be called the 
first significant result in set theory, about 2300 years before 
the invention of set theory. 

40 m If it doesn't, then be apprised/reminded that, by the rules of for

mal logic, an entailment like '(ap < bq)--+ (ar < bs)' will be false onlywhen 

the first term is true and the second term is false. Given this, feel free to let, 

say, p = 1, q = 2, r = 2, s = 4, a= 2, and b = 1, and to work these three 

different entailments out. You'll find that there's no case in which the first 

term's true and the second one's false-i.e., that~ really does equal i· 
41 m This will become way more relevant when we get to R. Dedekind's 

theory of real numbers in §6. 
42 IYI which in Dedekind's theory will be called a cut. 
43 the specificity lying in the choice of values for a and b. 
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It is also worth pointing out that there are probably no 
better examples in math of Russell's dictum about the caprice 
of intellectual fame than Eudoxus and his posthumous col
laborator Archimedes (287-212 BCE). The latter, granted, is 
anecdotally famous for his 'Eureka!' thing; but given our 
overall purposes it would be unfair not to acknowledge that 
he and Eudoxus more or less invented modern math, which 
then had to be reinvented many centuries later because 
nobody' d bothered to pay attention to the consequences of 
their results. 

Probably their most important invention is known as the 
Exhaustion Property, which Eudoxus discovered and Archimedes 
refined. It was a way to calculate the areas and volumes of 
curved surfaces and figures, something that Greek geometry 
obviously had a lot of trouble with (since it's w/r/t curves that 
you encounter most of the problems of continuity and irra
tionals). Geometers before Eudoxus had had the idea of 
approximating the area of a curved figure by comparing it to 
regular polygons44 whose areas they could calculate exactly. 
By way of example, see how the very largest square that can 
fit inside a circle functions as a crude approximation of the 
circle's area-

44 IYI = those w/ all sides the same length. 



Everything and More 

-whereas, say, the largest octagon that can fit inside will be a 
slightly better approximation-

-and so on, the point being that the more sides the 
inscribed polygon has, the closer its area will be to the circle's 
own A. The reason the method never actually worked is that 
you'd need a oo-sided polygon to nail A down all the way, 
and even if this oo was merely one of Aristotle's potential 
oos the Greeks were still stymied, for the same reason men
tioned w/r/t the Dichotomy: they didn't have the concept of 
convergence-to-a-limit. Eudoxus gave math just such a con
cept with his introduction of the Exhaustion Property, which 
appears as Prop. I in Book X of the Elements: 

If from any magnitude there be subtracted a part not less 
than its half, and if from the remainder one again subtracts 
not less than its half, and if this process of subtraction is 
continued, ultimately there will remain a magnitude less 
than any preassigned magnitude of the same kind. 

In modern notation, this is equivalent to saying that if p is a 

given magnitude and r a ratio such that t :5 r < l, then the 

limit ofp(l - rt is 0 as n tends to 00--i.e., Limp(l - r)" = 0. 
n--+o:i 

This allows you to approach, arbitrarily closely, an infinite 
number of sides to a polygon, or an infinite number of rec
tangles under a curve, each side/rectangle being arbitrarily 
( = infinitesimally) small, and then to sum the relevant 
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sides/areas by the inverse of the very process by which 
you derived them. The Method of Exhaustion is, for all 
intents and purposes, good old integral calculus. With it, 
Eudoxus was able to prove, e.g., that the ratio of any two cir
cles' areas equals the ratio of their radii's squares, that the 

volume of a cone is ~ the volume of a cylinder with the same 

base and height, & c.; and Archimedes' Measurement of a 
Circle uses Exhaustion to derive an unprecedentedly good 

. . f 223 22 approximation o 1T as 7I < 1T < 7 . 
Notice also the metaphysical canniness of Exhaustion's 

abstract entities. Eudoxus's method of getting infinitesimally 
small sides/figures into equations makes no claims about the 
existence of infinitely tiny magnitudes. Look at the bland 
language of the Elements's Prop. 1 above. The "less than any 
preassigned magnitude" is particularly clever-and strikingly 
similar to modern analysis's 'arbitrarily large/small'.45 It's 
basically saying that, for mathematical purposes, you can 
reach magnitudes that are as small as you want, and work 
with them. It's this concern with method and results rather 
than ontology that makes Eudoxus and Archimedes so eerily 
modern-looking. The way their "magnitudes less than any 
preassigned magnitudes" are created and deployed in Exhaus
tion is pretty much identical to the way infinitesimals will be 
treated in early calculus. 

Why, then, Europe had to wait nineteen centuries for 
actual calculus, differential geometry, and analysis is a very 

45 IYI It is, in truth, almost unbelievably close to the way A.-L. Cauchy 

will end up defining infinitesimals in terms of limits in order to avoid the 
various crevasses associated with infinitely small quantities, all of which 

gets hashed out below in §5. 
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long story that essentially bears out Russell's dictum. One 
cause is the same reason nobody thought to apply Exhaustion 
to Zeno's Dichotomy: the Greeks cared only about geometry, 

and nobody then thought of motion/continuity as abstractable 
into the geometry of the Number Line. Another reason is 
Rome, as in the Empire, whose sack of Syracuse and murder 
of Archimedes around 212 BCE brought an abrupt end to 
Hellenic math, 46 and whose hegemony over the next several 
centuries meant that a lot of the substance and momentum 
of Greek math was lost for a long time. The most efficient 
cause, though, was Aristotle, whose influence of course not 
only survived Rome but also reached new heights with the 
spread of Christianity and the Church from like 500-1300 CE. 

To boil it all way down, Aristotelian doctrine became Church 
dogma, and part of Aristotelian doctrine was the dismissal of 
oo as only potential, an abstract fiction and sower of confu

sion, to apeiron, the province of God alone, etc. This basic 
view predominated up to the Elizabethan era. 

ENDINTERP. 

§2e. (Continuation of §2c from the , on pp. 80-81 with the 
interpolative asterisks in it) Here, as a sort of hors d'oeuvre, 

are some of the things that G. Cantor47 eventually discovered 
about the nested oos of Zeno and Eudoxus. Discovered as in not 
just found out but actually proved. The Number Line is obvi
ously infinitely long and comprises an infinity of points. Even 

46 A bit of drollery among math historians is that killing Archimedes 

was the only truly significant mathematical thing the Romans ever did. 
47 IYI with, as we'll see, some preliminary machete-work from B. P. 

Bolzano and R. Dedekind. 
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so, there are just as many points in the interval 0-1 as there are 
on the whole Number Line. In fact, there are as many points in 
the interval .0000000001-.0000000002 as there are on the whole 
N.L. It also turns out that there are as many points in the above 
micro-interval (or in one one-quadrillionth its size, if you like) 
as there are on a 2D plane~ven if that plane is infinitely 
large--or in any 3D shape, or in all of infinite 3D space itself. 

More, we know that there are infinitely many rational 
numbers on the infinite Number Line, and (courtesy of 
Zeno) that these rationals are so infinitely dense on the Line 
that for any given rational number there is literally no next 
rational number-that is, between any two rationals on the 
N.L. you can always find a third one. Of which fact here's a 
brief demo. Take any two different rationals p and q. Since 
they're different, p ;o! q, which means one's bigger than the 
other. Say it's p > q. This means that on the Number Line 
there's at least some measurable distance, no matter how 
small, between q and p. Take that distance, divide it by some 
number (2 is easiest), and add the quotient to the smaller 

p-q 
number q. You now have a new rational number, q + (-

2
-), 

between p and q. And since the number just of plain integers 
by which you can divide (p - q) before adding the quotient 
to q is infinite, there are actually an infinity of rational points 
between any p and q. Let that sink in a moment, and then be 
apprised that even given the infinite density of the infinite 
number of rationals on the Number Line, you can prove that 
the total percentage of N.L.-space taken up by all the infinitely 
infinite rational numbers is: none. As in 0, nil, zip. The tech
nical version of the proof is Cantor's, and notice how 
Eudoxian-Exhaustive in spirit it is, even in the following natural
language form, which requires a little creative visualization. 
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Imagine you can see the whole Number Line and every one 
of the infinite individual points it comprises. Imagine you want 
a quick and easy way to distinguish those points correspond
ing to rational numbers from the ones corresponding to irra
tionals. What you're going to do is ID the rational points by 
draping a bright-red hankie48 over each one; that way they'll 

stand out. Since geometric points are technically dimension
less, we don't know what they look like, but what we do know 
is that it's not going to take a very big red hankie to cover 
one. The red hankie here can in truth be arbitrarily small, like 
say .00000001 units, or half that size, or half that half, ... , etc. 
Actually, even the smallest hankie is going to be unnecessarily 
large, but for our purposes we can say that the hankie is basi
cally infinitesimally small-call such a size qi. So a hankie of 
size 4> covers the N.L.'s first rational point. Then, because of 
course the hankie can be as small as we want, let's say you 

use only a ~-size hankie to drape over the next rational point. 

And say you go on like that, with the size of each red hankie 

used being exactly 1 that of the previous one, for all the rational 

numbers, until they're all draped and covered. Now, to figure 
out the total percentage of space all the rational points take 
up on the Number Line, all you have to do is add up the sizes 
of all the red hankies. Of course, there are infinitely many 

hankies, but size-wise they translate into the terms in an 
infinite series, specifically the Zeno-esque geometric series 

48 m There are all sorts of different procedures and objects to illustrate 

this proof with. As it happens, Dr. Goris used always to carry, blow/mop 

with, and deploy illustratively a large red pocket-handkerchief, which for 

over 25 years of classes he referred to as the Hankie of Death. 
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1 1 1 1 1 . a 
2o + 21 + 22 + 23 + 24 + · · ·; and, given the good old (1 _ r} 

formula for summing such a series, the sum-size of all the infi

nite hankies ends up being 2<!>. But <!> is infinitesimally small, 

with infinitesimals being (as was mentioned in §2b) so incredi

bly dose to 0 that anything times an infinitesimal is also an 

infinitesimal, which means that 2<1> is also infinitesimally small, 
which means that all the infinite rational numbers combined 

take up only an infinitesimally small portion of the N.L.-which 
is to say basically none at all49 -which is in turn to say that the 
vast, vast bulk of the points on any kind of continuous line will 
correspond to irrational numbers, and thus that while the afore
mentioned Real Llne really is a line, the all-rational Number Line, 

infinitely dense though it appears to be, is actually 99.999 ... % 
empty space, rather like DQ ice cream or the universe itsel£ 

Let's each pause privately for a moment to try to imagine 

what the inside of Professor G. F. L. P. Cantor's head might 
look like as he's proving stuff like this. 

A canny reader here may object that there's some kind of 
Zenoid sleight of hand going on in the above proof, and 

might ask why a similar hankie procedure and series couldn't 
be applied to the irrationa_l numbers to quote-unquote prove 

that the total % of Line-space taken up by the irrationals is 

also 2<1>. The reason such a proof can't work is that, no matter 
how infinitely or even oo""ly many red hankies you drape, 

there will always be more irrational numbers than hankies. 
Always. Cantor proved this, too. 

49 IYI You can, as a matter offact, prove mathematically that the proba· 

bility of somebody ever hitting a rational point with a random finger or 

dart on the N.L. or a proton fired randomly at it or whatever is: 0%. 
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§3a. It becomes appropriate at this point to bag all pre
tense of narrative continuity and to whip through several 

centuries schematically in a kind of timeline that goes from 
let's say 476 CE (fall of Rome) to the 1660s (foreplay to calcu
lus). With the tirneline's salients obviously being stuff related 
to oo and/or to the overall situation in math when Dedekind 
and Cantor enter the picture. And with the disadvantages of 
sketchy abstraction being somewhat offset by the advantages 
of compression, since at least one of us is starting to figure 

out that overall space is going to be a concern. The project 
here in §3 is thus just to nutshell certain developments that 
help bring about the eventual necessary/sufficient conditions 
for transfinite math. 1 

c. 500-c. 1200 CE Nothing much going on in Western 
math thanks to Rome, Aristotle, Neoplatonism, Church, etc. 
The real action now is in Asia and the Islamic world. By at 
latest 900 CE, Indian math has introduced zero as the 'tenth 
numeral' and the familiar goose-egg as its symbol, 2 has devel
oped a decimal system of positional notation that is basically 
our base-10 own, and has codified the essentials of how 0 

works in arithmetic (O + x = x, ~ = 0, no fair dividing by 0, 

etc.). Indian and Arab mathematicians, free of any Greek 
geomephilia, are able to work with numbers qua numbers 
and to achieve significant results with negative integers, the 

1 The only other general aim of §3 is for a level of reduction and 

simplification that is consistently < grotesque. 
2 If you learned in school that the symbol came from the Greek 

omicron, you got lied to. 
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aforementioned 0, irrational roots, and variables to stand for 
arbitrary numbers and so state general properties.3 Most of 
the Indo-Arab innovations make it back to Europe later, 
thanks mainly to Islamic conquests (e.g. of India (whose 
math the Arabs assimilated) in the 600s, as far west as Spain 
by 711, etc.). 

c. 1260 St. Thomas of Aquinas's quia arguments for 
God's existence4 constitute the official merger of Aristotelian 
metaphysics and Church doctrine. Thomas's basic move is to 
argue that since everything in the world has a cause, and 
those causes in turn have causes, and so on, there must at 
some point in the chain be an original uncaused Cause, 
namely God. Note, FYI, that this is essentially the same as 
Aristotle's famous Unmoved First Mover argument from 
Book VIII of the Metaphysics, which U.F.M. argument both 
Augustine and Maimonedes adopt for God-proofs, too. More 
important, see that for Thomas's argument to work, you have 
to accept the unspoken premise that an infinite transitive 
chain of causes and effects is impossible or incoherent. In 
other words, you have to regard as axiomatic the impossibility 
of oo as an actual feature of time or the universe, which basi
cally means you're buying Aristotle's relegation of oo to the 
same weird potential-only status as Rodin's Thinker in all 
blobs of bronze. 

3 This last you will recognize as a definition of algebra, the word for 

which is actually a corruption of the Al-jabra, a treatise by the Baghdad 

mathematician al-Khowarizmi (d. < 850 CE). 
4 min Summa Theologiae and De Potentia Dei (wl, M 2, 'quia' mean

ing reasoning from effects back to causes). 
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Elsewhere in Summa Theologiae, though, Thomas advances 

a more original argument: 

The existence of an actually infinite multitude is impossible. 
For any set of things one considers must be a specific set. And 
sets of things are specified by the number of things in them. 
Now, no number is infinite, for number results from count
ing through a set in units. So no set of things can actually be 
inherently unlimited, nor can it happen to be unlimited. 

This passage gets quoted by G. Cantor himself in his 

"Mitteilungen zur Lehre vom Transfiniten,"5 wherein he calls 
it history's only really significant objection to the existence 
of an actual oo. For our purposes, there are two significant 

things about Thomas's argument: (1) It treats of oo in terms 
of "sets of things," which is what Cantor and R. Dedekind 

will do 600 years hence (plus Thomas's third sentence is 
pretty much exactly the way Cantor will define a set's cardinal 
number). (2) Even more important, it reduces all of Aristotle's 
metaphysical distinctions and complications to the issue of 
whether infinite numbers exist. It's easy to see that what Can

tor really likes here is feature (2), which makes the argument a 

kind of tailorrnade challenge, since the only really plausible 

5 
= "Contributions to the Study of the Transfinite" (1887), which is 

one of Cantor's most important papers and appears on pp. 378-440 of 

his Gesammelte Abhandlungen mathematischen und philosophischen Inhalts 

( = Collected Works). We're citing this in such horrific detail so that from 

now on it will be understandable if there aren't detailed polysyllabic cita

tions and translations-of-citations of every last Cantor-related snippet. 
Pretty much everything Cantorian is findable in the Gesammelte Abhand

lungen, W/r/t which you can refer to the Bibliography for complete specs. 
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rebuttal to Thomas will consist in someone giving a rigorous, 
coherent theory of infinite numbers and their properties. 

c. 1350 +Brief Time-Jump Three medium-important 
figures w/r/t continuity and infinite series: N. Oresme, 
R. ('The Calculator') Suiseth, and Fr. G. Grandi. Oresme in the 
1350s invents a 'latitudinal' method for graphing motion and 
uniform acceleration.6 Among other things, it affords the first 
hint that relative velocity ( = sloped line) and relative area 
( = area under sloped line) are two aspects of the same thing. 
Around the same time, Suiseth solves a particular latitudinal 
problem that amounts to proving that the infinite series 

1 2 3 4 nh fi" 
2 + 4 + B + 

16 
+ · · · + 

2
,, as a mte sum, namely 2. (N.B.: 

No one thinks yet of applying this method to the Dichotomy.) 
Oresme then responds by proving that another infinite 

. l+l+l+l+l+l+ 1 ali th H . senes-2 3 4 S 6 ? · · · + 11, as e armomc 

Series-doesn't yield a finite sum even though the sequence 
of individual terms clearly appears to be approaching 0. 
(M Oresme's proof is ingeniously simple. By grouping the 
series' terms such that the first term = the first group, the 
second and third terms = the second group, the fourth
seventh terms = the third group, etc., so that the nth group 
contains 2n- I terms, he proves that you end up with an infinite 
number of groups each of whose partial sums is 2: !• produc
ing an infinite sum for the series.) 

6 IYI = a pre-Cartesian, pre-Newtonian, 100% geometrical kind of 

primitive calculus, with the method's eponymous latitudes being little 
vertical line-segments whose lengths represent velocity at an instant (the 

instants were the graph's 'longitudes'). Not sure whether all that explains 

the technique's name or just makes it more confusing .... 
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Suiseth and Oresme's series are, of course, respective 
examples of convergence and divergence, but no one for 
centuries will know how to name or handle different kinds of 
infinite series.7 Even in the postcalculus era, when series 
became the obvious way to represent complicated functions 
for differentiation and integration, certain Zeno-avatars kept 
coming up with paradoxes that confounded various attempts 
to systematize convergence and divergence. One of the most 
fiendish of these was the good old oscillating I - I + I - I + 
I - I + I ... series from §Id, which the Catholic mathemati
cian G. Grandi liked to use to torment the Bernoulli Brothers, 
famous colleagues of Leibniz who had proved the divergence 
of Oresme's Harmonic Series in the 1690s. Recall that the trick 
of the Grandi Series is that depending how you group the 
terms it ends up equaling both 0 and 1 ... ; or, by plugging x = I 

into the protologarithmic 1 l x = I - x + x 2 
- x 3 + · · ., you 

get the equality ~ = 1 - 1 + I - 1 + 1 - 1 + 1 . . ., which 

Grandi waggishly suggested was how God had created some

thing(~) from the Void (O). 

(IYI If you've retained some high-school algebra, it's also 
worth looking at a nasty little divergent series that L. Euler 
(1707-1783, icon of early analysis) got snookered by in 
the 1730s. You'll recall that by the long-division rules for 

polynomials, 1 ~ x = 1 + x + x 2 + x3 + · · ·, which if you then 

plug in x = 2 becomes the unhappy - I = 1 + 2 + 4 + 8 + · · ·. 
Or you can also get the Grandi Series again by using x = - I 
in the above expansion. 

7 Guess why. 
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Or, if your college math is solid, you can amuse 

yourself expanding 1 ! x by the Binomial Theorem to get 

log(l + x) = x -!x2 + ix 3 + · · · and seeing (as I. Newton, 

N. Mercator, and J. Wallis all did) that when x = 2 the series 
has an infinite sum but should also equal log 3. There's pretty 
much no end to these sorts of crunchers.) 

c. 1425-35 Florentine architect F. Brunelleschi invents 
the technique oflinear perspective in painting; L. B. Alberti's 
Della pictura is the first published account of how it works. 
We all probably know how paintings before the Renaissance 
look flat and dead and weirdly disproportionate. Brunelleschi 
applies geometry to pictorial space by figuring out a way to 
represent a 3D horizontal 'ground-plane' in a 2D vertical 
'picture-plane'. The technique is most easily seen in the rep
resentations of horizontal squares (say, the floor-tiling in 
Florence's Baptistery) as parallelograms (in numerous pic
tures of same) that get flatter and sharper-angled as the floor 
stretches away into the painting's background. Brunelleschi/ 
Alberti effectively conceive of a painting as a clear window 
interposed between a scene and the viewer, and they observe 
that any and all 'orthogonals,' or parallel lines receding into 
space at 90° to that window, will appear to converge to a van
ishing point at viewer-eye-level. This vanishing point is con
ceived, geometrically, as a point infinitely distant from the 
viewer. Just about everybody knows what Masaccio, Dtirer, 
Da Vinci, et al. were able to do with this discovery. 

Mathematically, the point-at-oo concept is later employed 
by J. Kepler in the Principle of Continuity that he establishes 
for conic sections and then uses for his Laws of Planetary 
Motion (see just below); and it's also central to G. Desargues's 
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1640-ish invention of projective geometry, and thus later to 

topology, to Riemannian geometry, to tensor analysis (with

out which in tum there'd be no General Relativity), etc. etc. 

1593 The Varia Responsa of F. Viete (French lawyer/ 

cryptographer) includes the first formula for summing an 

infinite geometric series,8 one that's awfully dose to the 

prenominate 
1 
~ r of freshman math. Although it isn't pretty, 

Viete is also the first to give a precise numerical expression 

for 'TT, viz. as an infinite product expressible as 

(IYI The object of salients like these last two is to establish 

that oo in various instantiations and contexts is coming to 

have more and more fruitful applications even as it remains 

metaphysically suspect and nobody has any idea how to deal 

with it mathematically.) 

1637 R. Descartes's La geometrie introduces the now

ubiquitous Cartesian coordinate plane, which lets geometri

cal figures be represented arithmetically/algebraically. 

c. 1585-1638 Three important figures, of whom two are 

extremely famous: S. Stevin, J. Kepler, and G. Galilei. 

In the 1580s, Stevin (Flemish engineer) resurrects Eudoxus's 

Exhaustion Property in deriving formulas for the weight

bearing characteristics of different geometric figures. E.g., in 

his Statics ( 1586) Stevin proves that a triangle's center of 

gravity lies on its median by inscribing an unlimited number 

8 
IYI Viete didn't use the words 'sum,' 'geometric,' or 'series,' but in 

effect that's what they were. 
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of arbitrarily small parallelograms in the triangle and proving 
stuff about the centers of gravity of the resulting inscribed 
figures. Stevin, who is a.k.a. the Dutch Archimedes, deserves 
more fame than he got. Here's a decontextualized but appo
site quotation from Carl Boyer: "It was largely the resulting 
modifications of the ancient infinitesimal methods that ulti
mately led to the calculus, and Stevin was one of the first to 
suggest these changes." 

As promulgated in his Astronomia nova (1609), J. Kepler's 
2nd Law of Planetary Motion depends on conceiving the area 
circumscribed by a radial vector linking an orbiting planet to 
the sun as composed (meaning the area's composed) of infi
nitely many infinitely skinny triangles, each with vertex A at 
the sun and vertices B & C infinitesimally close together along 
the orbital path. Kepler's summing the areas of this infinity of 
infinitesimals was, 70 years before Leibniz, applied calculus.9 

1636-38: Galileo Galilei, under Inquisitory house arrest in 
Florence, produces Two New Sciences, a Plato-style dialogue 
on mechanics/dynamics. There's a whole slew of oo-related 
stuff in this book. Just one example is the way Galileo applies 
Oresme's latitudinal graphing techniques to projectile motion 
and proves that the curve described by a projectile's path is a 
parabola. After 2000 years' mathematical study of conic sec
tions, Kepler's orbital ellipse and G. G.'s projectile parabola 

9 M Sorry about the occluded math-prose. If you can stand it, c.f. also 

Kepler's 1615 Stereometria doliorum (=Measurement of the Volume of 

Barrels (long story, involves Emperor Rudolph II and the Austrian wine 

industry)), which book's 'volumetric' method for determining the 

areas/volumes of figures created by rotating curves entails treating solids as 

composed of n infinitesimal polygons whose areas can be summed-again, 

well before Newton and Leibniz. 
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are the first real applications of conics in physical science. 

Kepler's lesser-known Ad Vitellionem paralipomena10 had 
already shown that ellipses, hyperbolas, parabolas, and circles 

are all products of a weird harmonic dance between two foci; 

the parabola is explained as what happens to a hyperbola 
when one focus's position relative to the other reaches oo. Not 

at all accidentally, Kepler's whole theory of conics' interrela
tions is known as the Principle of Continuity. 

Galileo's Two New Sciences was in certain respects one long 

raspberry at the Inquisition, whose treatment of G. G. is infa
mous. Part of this agenda was to have the dialogue's straight 

man act as a spokesman for Aristotelian metaphysics and 

Church credenda and to have his more enlightened partner 

slap him around intellectually. One of the main targets is Aris
totle's ontological division of oo into actual and potential, which 
the Church has basically morphed into the doctrine that only 

God is Actually Infinite and nothing else in His creation can be. 
Example: Galileo ridicules the idea that the number of parts 

that any line segment can be divided into is only 'potentially' 
(meaning unreal-ly) infinite by showing that if you bend the 

segment into a circle-which, a la Nicholas of Cusa, 11 is defined 
as a regular polygon with a oo of sides-you have "reduced to 
actuality that infinite number of parts into which you claimed, 

while it was straight, were contained in it only potentially." 

Galileo's spokesman also spends a lot of time on infinitesi
mals, mainly because of their utility in Stevin and Kepler's 
results. G. G. is the first to distinguish between different 

'orders' of infinitesimals, mainly via an involved argument 

10 
IYI It's true: all early-modern math titles sound like horrible diseases. 

11 
IYI c. 1401-1464, mathematician and R. C. Cardinal; long story. 
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about why, if the earth spins, objects aren't thrown off the 
world at various tangents to the spin's curve, which is all a 
long story but the upshot is that two infinitesimals are of dif
ferent orders if their ratio tends either to 0 or to oo and are of 
the same order if their ratio's finite. This is relevant because: 
( 1) the idea that higher-order infinitesimals are so unbeliev
ably tiny and evanescent that they can be discarded from an 
equation because they'll have no effect on the result ends up 
being vital for classical calculus; and (2) Galileo's distinction 
anticipates some of G. Cantor's own discoveries about the 
strange arithmetic of infinite quantities, viz. that not all oos 
are the same size but that the differences between them aren't 
really arithmetical (e.g., adding n to oo doesn't increase it, nor 
does adding oo to oo or multiplying oo by oo) but more like 
geometric. 12 

The extreme mathematical weirdness of oo, which Galileo 
spends a lot of time in TNS giving examples of, is rather pre
sciently attributed to epistemology instead of metaphysics. 
Paradoxes arise, according to G. G.'s mouthpiece, only "when 
we attempt, with our finite minds, to discuss the infinite, 
assigning to it those properties which we give to the finite and 
limited." The big illustration of this is §l's Paradox of 
Galileo, in which recall you can set up a one-to-one corre
spondence between all the integers and all the perfect squares 
even though it's evident that there are way more integers 
than perfect squares. 13 From this cruncher, Galileo concludes 
that "we must say that there are as many squares as there are 

12 IYI This all gets unpacked in much more detail in the climactic §7 

below. 
Total# of integers 

13 IYI In fact, the ratio 
1 

f S itself tends to oo as you get farther 
Tota #o P .. s 

and farther out in the sequence. 
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numbers," and thus (again) that "the attributes 'equal,' 'greater,' 
and 'less' are not applicable to infinite, but only to finite quanti
ties." Though the latter conclusion turns out to be wrong, 
TNS's is still the first truly modem attitude toward actual infini
ties as mathematical entities. Notice, for instance, that Galileo 
does not pull out the old Aristotelian reductio and conclude 
from the paradoxical behavior of infinite sets that oo can't be 
reasoned about. Instead, he manages somewhat to anticipate 
both Kant (by attributing oo-paradoxes to the hardwired con
straints of 'finite minds' rather than to any extramental reality) 
and Cantor (by using one-to-one correspondence as a compar
ative measure of sets, by arguing that infinite quantities obey a 
different sort of arithmetic than do finite quantities, etc.). 

Familiar fact: The seventeenth century, with its Counter
Counter-Reformation and Scientific Revolution, saw the first 
real explosion in philo-mathematical progress since the Hel
lenistic acme. This is the century in which Descartes invents 
coordinate geometry (as well as Radical Doubt), Desargues 
invents projective geometry, Locke empiricism, Newton and 
Leibniz college math. None of these would have been possible 
without a loosening of the Aristotelian stranglehold on Western 
thought. Galileo's TNS is up there with Descartes's Discourse on 
Method and Bacon's Novum Organum in terms of holdbreak
ing, and it is no accident at all that so much of its time is spent 

on oo. From among a whole ream of apposite supporting quo
tations here, see Prof. T. Danzig's "When, after a thousand-year 
stupor, European thought shook off the effect of the sleeping 
powders so skillfully administered by the Christian Fathers, the 
problem of infinity was one of the first to be revived." 

The other way Two New Sciences is important is in its 
sustained and original use of the function. You doubtless 
remember what a mathematical function is and why it's hard 
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to define clearly (such as, e.g., 'A relation between variables,' 
'A rule for establishing the image of a domain,' 'A mapping'). 
A function is at least one abstraction-level up from variables, 

being basically a rule for pairing elements in one set with ele
ments in another set. For now, let's assume we all pretty much 
know what a function is--0r rather what it does, since a func

tion is really a kind of procedure even though symbolism like 

'f(x) = 1' tends to make it seem like a thing. At least 

graphically, the idea of a function had been around since 
Oresme in the fourteenth century, although Oresme had used 
Scholastic terminology and called his technique a latitude of 
forms, 'form' being the Aristotelian term for features or quali
ties, which were thought to include things like the speed of a 
moving body. Not until Galileo would people understand that 
velocity is not a quality of the thing moving, but rather an 

abstract process representable by the schoolboy function r = 1, 
just as (up one level of abstraction) it was G. G. who determined 

that acceleration operates as the functions= i at2
• 

Two New Sciences is the first math book to make extensive 
nongraphical use of functions, although the functions here are 
described verbally and often (a la the Greeks) in terms of pro
portions and ratios. What's striking is the speed with which 
the concept/theory of functions gained currency once a cer
tain critical mass of needs and permissions was reached. 14 

Most of these needs involved continuity. The broad outline 

14 J. Gregory (q.v. main text just below) gives the first widely accepted 

definition of a function in a book on quadrature problems only 30 years 

after TNS. 
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here is that Kepler's astronomy and Galileo's studies of 
motion-which were themselves motivated largely by the 
need for improved timekeeping in navigation (again, long 
story )---created the impetus for a rigorous study of curves, 
which curves the Cartesian coordinate plane allowed to be 
expressed algebraically, i.e. as functions like y = x 2

, y = sin x, 
and so on. The important distinctions between polynomial, 
algebraic, and transcendental functions15 were easily derived 
from Descartes's classifications of curves, as well as from the 
explicit representations of functions by different kinds of 

15 The differences between these sorts of functions can be left at the fact 

that the transcendentals are the really hairy ones: trigonometric, exponen

tial, logarithmic, etc. What can't be left vague is the synonymic distinction 

between algebraic and transcendental numbers, which is part of the whole 

broad taxonomy in which of course integers + fractions compose the 

rational numbers, rational + irrational numbers make up the real num

bers, a real number plus an imaginary number like V-1 constitutes a 

complex number, and so on. Given our general purposes, we don't have to 

deal with anything beyond real numbers, luckily. But be advised that the 
reals' irrational component itself comprises two different kind of num

bers-or rather the distinction rational v. irrational kind of overlaps 

another distinction, that between algebraic and transcendental numbers. 

This difference becomes important when we get to Cantor's proofs about 

the various sizes of the oos of different 'number-classes'. So: An algebraic 

number is one that is the root of a polynomial with integer coefficients. As 

in, say, Vs is an algebraic number because it's the zero-root of lx2 
- 8 = 

0. (Actually integers, rationals, and even complex numbers can be alge

braic too-like e.g. the respective zero-roots of 2x - 14 = 0, 2x - 7 = 0, 

and Jx2 
- 2x + I = 0--but in terms of Cantor/Dedekincllcontinuity we 

need nail down only the surds.) Transcendental numbers, then, are those 

that aren't algebraic, i.e. that can't be roots of integer-coefficient polyno

mials; n is a transcendental surd, as is e, the base of natural/hyperbolic log

arithms (which don't worry about it if that term's not familiar). 
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series a little later ( = c. 1670). The word 'function' itself, by 
the way, comes from G. W. Leibniz. 16 Which of course is 
hardly an accident, since Leibniz helped invent the calculus, 
and one of calc's most powerful features is the use of func
tions to represent processes. After Leibniz, the crevasse
fraught concept of 'continuous phenomena' gets replaced in 
math by the continuous function and the infinite series ... 
and in point of fact G. Cantor's explorations of oo will end up 
coming out of a particular application of just these tools to a 
certain set of problems involving heat. Which is obviously a 
very long story we're now engaged in trying to set up. 

Here, by the way, is a quotation from D. Berlinski: "It is 
the contrast between the continuous and the discrete that is 
the great generating engine by which the real numbers are 
constructed and the calculus created." Just so we remember 
where we are in the overall forest; this section is just trees. 

c. 1647--65 Three medium-important figures, who if this 
had been 200 years earlier would all now be extremely famous: 
Gregory of St. Vincent, J. Wallis, and J. Gregory. 

c. 1647: Gregory of St. V. proposes a solution to Zeno's 
Dichotomy that explicitly mentions the sum of a geometric 
series. 17 He's also the first mathematician to posit that an infi
nite series represents an actual magnitude or sum, which he is 
also the first to posit as the series' limit, which he calls the 
"progression's terminus" and describes in rather Eudoxian 

16 M 'Function' was Leibniz's alternative to Newton's weird word 'fluent'; 

and, as was the case with a lot of other terminology, Leibniz's term became 

the preferred one. Factoid: Leibniz also introduced 'constant' and 'variable'. 
17 IYI The proffered solution is actually to "Achilles v. the Tortoise," but 

it amounts to the same thing. 
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terms as an end "to which the progression does not attain, 

even if continued to infinity, but to which it can approach 
more closely than by any given interval." 

1655: Wallis, the 2nd-greatest British mathematician of the 
century, publishes his aforementioned Arithmetica infinito

rum, whose title is 0% coincidental. This is the first major 
work on infinite series' application to the arithmetization of 
geometry, and it will be indispensable to Newton's version of 
calculus18 a couple decades hence. Among A.i.'s important 
results: The first correct general def. of the limit of an infinite 
sequence and the sum of an infinite series; the use of an infi
nite product to represent the sine and cosine; the demonstra-

. 7r 2X2 4X4 6X6 
tlon that 2 = (

1 
X 

3
) X (

3 
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) X (

5 
X 7) X · · · (compare 

L 'b . , 'TI' I I + 1 1 + 1 1 ti l ) e1 mz s 4 = - 3 5 - ? 9 - Tl · · · a ew years ater ; 

and of course the first use of 'oo' as a symbol for oo. 

1665: J. Gregory (a Scot) defines 'function,' lobbies to 
make approaching a limit the sixth basic function of algebra, 
and expands several different trig and inverse trig functions 

3 5 

into infinite series, e.g. proving that 'arctan x = x - ~ + ~ -
7 

x
7 

+ ···'holds for -1 s x s 1. A whole lot of series-expansion 

work goes on around this time, mostly because navigators, 
engineers, et al. needed much more detailed and accurate 

trigonometry- and logarithm tables, and expansions of func
tions into infinite series was the best way to interpolate table 
values. 

18 IYI This is because Anglican cak depended so heavily on infinite 
series and the Binomial Theorem-q.v. §4a below. 
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(M Also c. 1665 The Binomial Theorem (i.e., the high
school formula for expanding (p + q)") is liberated from the 
(p + qt- 1-dependence of Pascal's Triangle by I. Newton. 
The expansion is thought to be infinite for fractional or 
negative n's, but nobody can really prove anything about the 
B.T. or the convergence/divergence of series in general until 
J.-B. J. Fourier in the 1820s.) 

§3b. As has been at least implied and will now be 
exposited on, the math-historical consensus is that the late 
1600s mark the start of a modern Golden Age in which there 
are far more significant mathematical advances than anytime 
else in world history. Now things start moving really fast, and 
we can do little more than try to build a sort of flagstone path 
from early work on functions to Cantor's infinicopia. 

Two large-scale changes in the world of math to note very 
quickly. The first involves abstraction. Pretty much all math 
from the Greeks to Galileo is empirically based: math con
cepts are straightforward abstractions from real-world experi
ence. This is one reason why geometry (along with Aristotle) 
dominated mathematical reasoning for so long. The modern 
transition from geometric to algebraic reasoning19 was itself a 
symptom of a larger shift. By 1600, entities like zero, negative 
integers, and irrationals are used routinely. Now start adding 
in the subsequent decades' introductions of complex num
bers, Napierian logarithms, higher-degree polynomials and 
literal coefficients in algebra-plus of course eventually the 
1st and 2nd derivative and the integral-and it's clear that as 

19 IYI This change is symbolized nicely by trigonometry's movement 

from degrees and geometric shapes to radians and trig functions. 
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of some pre-Enlightenment date math has gotten so remote 
from any sort of real-world observation that we and Saussure 
can say verily it is now, as a system of symbols, "independent 
of the objects designated," i.e. that math is now concerned 
much more with the logical relations between abstract concepts 
than with any particular correspondence between those con
cepts and physical reality. The point: It's in the seventeenth 
century that math becomes primarily a system of abstractions 
from other abstractions instead of from the world. 

Which makes the second big change seem paradoxical: 
math's new hyperabstractness turns out to work incredibly 
well in real-world applications. In science, engineering, 
physics, etc. Take, for one obvious example, calculus, which 
is exponentially more abstract than any sort of 'practical' 
math before (like, from what real-world observation does 
one dream up the idea that an object's velocity and a curve's 
subtending area have anything to do with each other?), and 
yet is unprecedentedly good for representing/explaining 
motion and acceleration, gravity, planetary movements, 
heat-everything science tells us is real about the real world. 
Not at all for nothing does D. Berlinski call calculus "the 
story this world first told itself as it became the modern 
world." Because what the modern world's about, what it is, is 
science. And it's in the seventeenth century that the marriage 
of math and science is consummated, the Scientific Revolu
tion both causing and caused by the Math Explosion because 
science-increasingly freed of its Aristotelian hangups with 
substance v. matter and potentiality v. actuality-becomes 
now essentially a mathematical enterprise20 in which force, 

zo IYI Newton obviously the bestriding Colossus here .... 
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motion, mass, and law-as-formula compose the new tem
plate for understanding how reality works. By the late 1600s, 
serious math is a part of astronomy, mechanics, geography, 
civil engineering, city planning, stonecutting, carpentry, met
allurgy, chemistry, hydraulics, hydrostatics, optics, lens-grinding, 
military strategy, gun- and cannon-design, winemaking, archi
tecture, music, shipbuilding, timekeeping, calendar-reckoning: 
everything. 

And the practical influence cuts both ways. Here is a defin
itive quotation from M. Kline: "As science began to rely more 
and more upon mathematics to produce its physical conclu
sions, mathematics began to rely more and more upon scien
tific results to justify its own procedures." And, as will be 
made heavy weather of in §§ 4 and 5 below, this union is 
fruitful but also rife with hazards. In brief, all sorts of for
merly dubious quantities and procedures are now admitted 
to math on account of their practical efficacy, meaning that if 
mathematics wants to retain its deductive rigor they will have 
to be rigorously 'theorized' and grounded in math's axiomatic 
schema. Guess which examples of these long-questionable 
concepts we're interested in here. Have a look at the pellucid 
Kline again, here in a chapter of his Mathematical Thought 

titled "Mathematics as of 1700": "Infinitely large quantities, 
which the Greeks had studiously avoided, and infinitely small 
ones, which the Greeks had skillfully circumvented, [now] 
had to be contended with." 

§3c. So then once the Story of oo hits the late 1600s we're 
now barreling at high and irreversible speed toward Cantor et 
al., and the math gets a lot more abstract and technical. And a 
Command Decision's been made that at selected points you 
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are going to have to be subjected to quick little EMERGENCY 

GLOSSARIES in which certain unavoidable terms/concepts are 
defined so that they can then be used without constantly hav
ing to stop and noodle around in medias about what they 
mean. Some will be new; some have already been mentioned 
or may seem sort of obvious but are important enough that 
they and some of their associated subterms have to be nailed 
down 100% tight. 

N .B.: The following first EMERGENCY GLOSSARY may be a bit 
dry due to sheer compression; and though it was tempting to 
designate it IYI for readers with strong math backgrounds, 
the fact is that many of the definitions are so radically 
decocted and simplified that it's probably worth your time to 
at least scan E.G.I so you're clear on the specific ways we're 
going to be using the terms. For readers without much col
lege math, on the other hand, the following should be all we 
need to proceed for at least the next few §s. 

EMERGENCY GLOSSARY I, W/ AN ASSOCIATED NARRATIVE TIME-JUMP 

-Real Line As mentioned, this is essentially an amped-up 
Number Line, meaning a geometric line with a fixed dense 
scale so that every real number corresponds to a unique point 
on the line. For our purposes, the Real Line is a 'topological 
space,' which here means that the Line and the set of all real 
numbers it represents can be used interchangeably to refer to 
the same abstract thing2 1-which thing, it's also already been 
mentioned, is usually called 'The Continuum,' w/ this term 

21 N.B., especially for later, that Weierstrass's, Dedekind's, and Cantor's 

theories about real numbers and continuity are often referred to in math 

books as the topology of the Real Line. 
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itself meaning exactly what it looks like it means: the com

bined origin and instantiation of continuity. 
-Function Pretty much already covered in §3a--or have a 

look at this wonderful def. straight from a 5th-grade math 

class: "A relationship between two things where the value of 
one is determined by the value of the other." You'll recall from 

basic algebra that in a regular function like y = f(x), xis the 

independent variable and y is the dependent variable, meaning 

simply that changes in x produce other changes in y according 

to the rules of f The set22 of all possible values that can be 
assumed by the independent variable is called the function's 

domain; the set of all possible y-values is the function's range. 
-Real Function A function whose domain and range are 

sets of real numbers. 
-Continuous Function (a) The function y = f(x) is contin

uous if tiny little changes in x yield only tiny little changes in 
y; there are no big jumps or gaps or weirdnesses. If a function 
is discontinuous, it's usually discontinuous at a certain value 

for the independent variable; e.g. f (x) = x;: 
1
1 is discontinu

ous at x = 1.23 (FYI, there happen to be all different kinds of 

discontinuities, each with its own characteristic behavior and 

22 IYI sets of course being strictly speaking post-Cantor entities, but 

what are you going to do .... 

23 IYI That is, if you graph f (x) = x
2 

-
1
1, you'll see that the resultant x-

curve has a hole in it corresponding to l's position on the x-axis, because 

here the f(x) equals~, which is mathematically defined as mathematically 

undefined. (IYI2 The especially savvy reader might notice that there's 

limit-value and limit-of-function stuff going on in this example, too, 

which we're not mentioning because we haven't done limits yet.) 
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graph-shape and technical name-'jump discontinuity,' 
'removable discontinuity,' 'infinite discontinuity'-but we're 
probably not going to fool with these distinctions.) 
-Interval The amount of space on the Real Line between 
two points, say p and q, which is equivalent to the set of all 
real numbers between p and q. Here p and q are called the 
interval's endpoints. The closed interval [p, q] contains the 
endpoints; the open interval (p, q) doesn't. Notice the brack
ets for closed intervals and the parens for open ones; that's 
how the difference gets symbolized. 
-Neighborhood On the Real Line, the neighborhood of a 
point p is the open interval (p - a, p + a) where a > 0. 
Another way to express this is to say that the a-neighborhood 

of p is the set of all points whose distance from p is less than a. 

-Continuous Function (b) Functions are often ID' d as 
continuous/discontinuous in or over certain intervals. A 
function f(x) is continuous over the open interval (p, q) if it 
is continuous at every point in (p, q). For it to be continuous 
over the closed interval [p, q], the following have to be true: 

Limf(x) = f(p) and LiJl!f(x) = f(q) 
~p+ ~q 

which of course will make sense only if you're conversant 
with limits. 
-Limits Or rather maybe Limits v. Bounds, since these are 
related but also crucially different. The distinction is proba
bly easiest to see with respect to sequences. Oops. 
-Sequence Any succession of terms formed via some rule, 
e.g. the geometric sequence I, 2, 4, 8, 16, ... , 2"- 1

, •••• 

-Limits v. Bounds (a-d) The informal mnemonic that Dr. G. 
always suggested was that limit involves the expressions 'tends 
to' or 'approaches,' while bound takes the modifier 'upper' or 
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'lower'. (a) The limit of a sequence is the great unspoken con
cept behind Zeno's Dichotomy and is implicit in Eudoxian 
Exhaustion, Kepler's volumetrics, etc. W/r/t sequences, 
'limit' refers to the number you never actually arrive at but 
do get closer and closer and closer to as the number of terms 
in the sequence grows. Put a little more sexily, the limit L of 
the infinite sequence P1> p2, p3, ••• , Pn> ..• is the number that 
the sequence approaches (or 'tends to') as n approaches oo, 
with this latter approach symbolized by a little sublinear '---+' 
and the whole thing by Lim Pn = L. (b) The limit of a 

n--> oo 

function is basically the value that the dependent variable 
approaches as the independent variable approaches some 

other value. A ubiquitous Cale I example is f(x) = :k, where 

f(x) approaches 0 as xapproaches oo, written as Lim(~)= 0.24 

x-->"' 

(c) The bound of a function is a totally different horse. It's a 
restriction of some kind(s) on the function's range. A classic 
example from trig is f(x) = sin x, where all the values of f(x) 
are going to be between -1 and 1. More important for our 
purposes is that functions can have upper bounds (U) and/or 
lower bounds (L) such that f(x) $ U and/or f(x) ~ L for all x 
in the function's domain. Even more important are the 
further-specified least upper bound and greatest lower bound 
of a function, where U 1 is the least upper bound of f(x) if any 
other upper bound Un is~ Up and L1 is f(x)'s greatest lower 
bound if it's~ any other lower bound L". (d) Sequences can 

24 IYI The 'approaches' stuff is actually technically wrong, as will get 

spelled out in some detail when we start talking about Weierstrassian 

analysis in §Se. The idea here in E.G.I is to make limits intuitively clear, not 

mathematically rigorous. 
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have bounds in pretty much the same way as functions. The 
infinite sequence of positive integers l, 2, 3, ... obviously has 
a lower bound at 0, which will also constitute the upper 
bound of -1, -2, -3, .... A bounded sequence is one that's 
got both an upper and lower bound; e.g. if x ~ l, it's easy to 

see that the sequence generated by expanding25 1 - (f) will 

be so bounded. 26
•
27 

-Series Definable as a sequence whose terms are all added 
to on_e another, as in the geometric series 1 + 2 + 4 + 8 + 
16 + ... +2"- 1 + · · ·. The intimate relation of series to 
sequences means that they share most qualities and associ
ated predicates, with one big exception: where sequences 
have limits, series have both limits and sums. You might 
recall the infamous Big Sigma of college math, which lets you 
designate the sum even of series with an infinite number of 
terms-because it turns out that all the interesting series are 
infinite. The sum of the infinite series p1 + p2 + p3 + · · · + 

a> 

Pn ... is written LPn• where the tiny antipodal 'oo' and 
n=I 

'n = 1' indicate the limits (meaning here the range of possible 
values of n) of the series. 28 Infinite series are convergent if they 

zs oopsz : see -Expansion below 
26 IYI viz. by a lower 0 and an upper l, which you're welcome to start 

plugging in values for x and see for yourself. 

z7 Please N.B. now that bounds and boundedness work pretty much the 

same way for sets as they do for sequences. This will start being important 

in §7, at which time you will probably be asked to flip back and review this 

very FN. 
28 IYI More lagan for later retrieval: If it's occurred to you to wonder 

whether the sum's appogiaturan 'oo' denotes an actual limit or end or 

rather in fact the absence of any limit/end, be advised that this question is 
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converge to a finite sum (see, e.g., how the Zenoid 

I + ! + ~ + ~ + · · · converges to the sum 2) and divergent if 

they don't (as in the series 1 + 2 + 3 + 4 + · · · ); but both 
kinds of series have at least abstract sums29 that can be symbol
ized via 'I' and treated as quantities in further calculations. 
-Infinite product Sort of like an infinite series except the 
terms are multiplied.30 A lot of things in trigonometry, from 
'TT to the sine and cosine functions, can be represented as infi
nite products, depending on how you handle the expansions. 
-Expansion This means putting something mathematical 
in the form of a sequence/series/product (we're particularly 
interested in series-expansions). How it works depends on 

highly significant and goes to the heart of what Weierstrass/Dedekind/ 

Cantor were able to do for analysis (w/r/t which stay tuned for -Analysis). 

If, on the other hand, you're wondering how mathematicians before Weier

strass actually viewed these cos that their xs and n's 'approached,' the basic 

answer is that they relegated these infinitely large/small quantities to the 

same vague, dotted-outline existence as Aristotle's potential infinite. The 

idea is that the real mathematical/metaphysical status of limits' infinities 

never has to be considered, because nothing ever actually gets there. If this 

strikes you as a bit shifty, then you are already in a position to see why 

Weierstrass thought it all needed rigorizing. 
29 Shit. All right. The strict truth is more complicated than that, and 

involves the limits of sequences of partial sums, where a partial sum = the 

sum of some finite number of consecutive terms in a series. The basic idea 

is that if the infinite sequence of its partial sums tends to some limit S, then 

an infinite series is convergent and its sum is S. And that a divergent series 

is one whose sequence of partial sums doesn't approach a limit, and so it 

doesn't have a finite sum. All of which is way too abstract at this point but 

hopefully will make more sense by the end of §5. 
30 IYI We're not going to be worrying about associated terms like con

tinued product and oscillating product. 
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what you're expanding. The expansion of a mathematical 
expression is usually pretty straightforward, as in recall all the 
mechanical (x + y) 2 

- x 2 + 2xy + y 2 operations of high
school math ( w/r/t which you'll recollect also that whatever 
constants there are in front of the terms' variables are known as 
the series' coefficients). Functions, on the other hand, are more 
interesting and thus more complicated. Not all are even 
expandable, for one thing. For a function to be representable as a 
series, the function's series-expansion either (1) must be finite or 
(2) must, if it's infinite, converge to the function for all values of 
the variables. Example: The trig function cos xis representable by 

. x 2 x4 x 6 x 8 
31 the convergent power senes 1 - - + - - - + - - · · · 

2! 4! 6! 8! . 

-Power Series A particular kind of series involving expo
nents (a.k.a. powers), the generic power-series form being 

Po + P1X + P2X
2 + p3x

3 + · · · + Pnx" + · · ·where the x-values 
are real numbers and the p-values are coefficients. Factoid: 
The expansions of the basic sine, cosine, elliptic, hyperbolic, 
log, and exponential functions are all power series (as too is 
Zeno's Dichotomy). 
-Fourier Series, which are sort of the sum of two power 
series, are 3rd- or 4th-term college math32 and can be real 
brainmelters, but they're vital to the context of transfinite 
math and have to be at least generally pinned down. For our 
purposes, Fourier Series can be regarded as expansions of 
periodic functions, w/rlt which latter all you need to know is 
that they're ways to represent various kinds of waves and so 
are also sometimes called wave functions. The fundamental 
wave functions are trig's sin x and cos x, and the elementary 

31 IYI where the factorial '2!' means 2 X I, '4!' means 4 X 3 X 2 X I, etc. 
32 IYI usually studied under the heading Harmonic Analysis. 
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Fourier Series is the expansion of a trig function f(x) into-
"' 00 

get ready- L an cos(nx) + ~ b,, sin(nx),33 where a and bare 
n=O n=O 

what's known as Fourier coefficients, which are so conceptu-
ally hairy that we plan to avoid them at almost any cost. 
-Quadrature This is the 1600s' term for a certain kind of 
problem that led to integral calculus. Technically, it refers to 
constructing a square whose area = the area bounded by a 
closed curve. An early-modern version of the old Squaring 
the Circle problem, in other words. We're bothering to define 
'quadrature' because it gets used below in certain historical 
contexts where it would be wrong to say 'integration' instead 
because integration did not, strictly speaking, exist yet. 
-Derivative (n.) The McGuffin of differential calc. In sex
ual terms, it's an expression of the rate of change of a func
tion with respect to the function's independent variable.34 

Since it might ring bells from math class, let's add that the 
derivative of a function f(x) at a certain point p can be under
stood as the slope of the tangent to the curve given by y = f(x) 

at p, although this won't have much application for us. 
Important bonus factoid: The process of finding a given 
derivative is called differentiation. 

33 IYI If by chance you are flipping back to this entry from §Sb and 
noticing that this F.S. looks different from Fourier's original Exhibit, be 

apprised that the two are really the same. It's just that the above form 

makes it clearer how Fourier Series comprise and combine two different 

trig series, which-if you're not flipping back-will in turn make more 

sense when trigonometric series are defined in E.G.11. Sorry if this is confus
ing; we're doing the best we can. 

34 IYI If you're innocent of college math, this def. will make more sense 

when we look at classical calc in §4a. 
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-Integral (n.) This is the inverse of the derivative, i.e. the 
function that has a given derivative, i.e. the function the 
derivative's derived from; i.e., if f(z) is the derivative of f(x), 

then f(x) is the integral of f(z). Way more on all this in an 
actual context coming up in §4. (N.B. The process of finding a 
given integral(s) is called integration, which is what mathe
maticians often do when they're stuck on a problem and don't 
know how to proceed. Hence the calligraphic slogan in many 
math-grad-student offices: DON'T SIT AND WAIT-INTEGRATE.) 

-Analysis Another highly abstract term that can't be 
finessed or avoided. There's a very formal definition involv
ing the way certain types of functions vary around the neigh
borhood of a point on a surface, which given our overall 
agenda can be dispensed with in favor of the idea that analy
sis is the branch of math that studies anything having to do 
with limits or 'limiting processes' -meaning calculus, func
tions of real and complex variables, topology of the R.L., infi
nite sequences and series, and so on. Books and classes often 
refer to analysis as 'the mathematics of continuity.' Which 
can be a little misleading, because most of us are also taught 
that continuity is the jurisdiction of calculus, and there are 
some wholly non-calc areas that are still analysis, of which 

areas a couple are especially relevant. Algebra sort of bleeds 
into analysis via the Binomial Theorem35 when n is < 0 and 
the expansion of (p + qr becomes the infamous Binomial 
Series; likewise trig ---+ analysis when, e.g., the sine- and cosine 
functions are expanded into their respective power series. 

An additional complication is that for modern mathe
maticians 'analysis' can also connote a particular sort of 

35 IYI which got de facto defined at the very end of §Ja. 
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methodological spirit in which the above sorts of fields are 

studied. See e.g. this from the Oxford Concise Dictionary of 
Mathematics: "The term 'analysis' has come to be used to indi
cate a rather more rigorous approach to the topics of calculus, 
and to the foundations of the real number system," in which 
the latter parallel phrase = the purview of Dedekind and Can

tor, w/ the reasons why calc topics should have needed "a more 
rigorous approach" constituting the real motive cause behind 
their work. In brief, the whole rigor-and-foundations thing 
was part of the great philosophical emergency of postcalculus 
math, a deep split over how mathematical entities should be 
viewed and theorems proved; and this split is in turn the deep 
context behind the controversies over Cantor's transfinite 
math. All of which will get hashed out as we proceed. 

Something else implicit in the Oxford quotation involves the 

old oppositions discrete v. continuous and geometry v. pure 
math. As it happens, the big names behind the early calculus 
were all concerned with continuous functions and magnitudes 
that were either outright geometric (lines, curves, areas, vol
umes) or geometrically representable (force, velocity, accelera
tion). Be advised now, though, that one of math's major 
preoccupations in the century leading up to Cantor and 
Dedekind will be the Arithmetization of Analysis, which in 
essence means deriving theorems about continuous functions 
using only numbers, not curves or areas. This Arithmetization 
ends up bringing analysis more into the provinces of algebra and 
number theory, fields that had hitherto been devoted to 100% 
discrete math entities/phenomena. What occurs in nineteenth
century analysis will be a detachment from geometry similar to 
Greek math's after the D.B.P.'s discovery of irrationals. 

We are now once again sort of out over our skis, chro
nologically speaking. The main oo-related question to keep in 
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mind throughout the next couple §s is going to be why exactly 
calculus should have required the additional rigor mentioned 
above in the EMERGENCY GLOSSARY (which we're now more or 
less no longer in). It's also worth emphasizing, again for future 
use, that the most important distinction between discrete and 
continuous phenomena in math is that the former can be char
acterized with just rational numbers, whereas continuity 
requires all the reals. meaning also irrationals. 

It so happens that an important figure in both the Arith
meticization of Analysis and the mathematics of co is Fr. B. P. 
Balzano (17 81-1848) of the University of Prague, whom for 
a variety of reasons this is the place to talk about-although 
to do this we· re going to have to get briefly into the 1800s and 
then kind of hiccup and go backwards again in the next §. 
Arithmeticization-wise, the priest Bolzano is the least well
known of a quartet of mathematicians who pioneered what 
came to be known as 'rigorous analysis' in the early nine
teenth century, the other three being A.-L. Cauchy, N. Abel, 
and P. G. L. Dirichlet. Cauchy tends to get the most credit, 
thanks mainly to his Cours d' analyse ( 1821), which became 
the standard college-math textbook in Europe for 150 years. 
Broadly stated, Cauchy's project involves trying to rescue cal
culus from its metaphysical difficulties36 by defining infinites
imals rigorously in terms of limits; but much of Cauchy's 
analysis is still beholden to geometry in ways that end up 
causing problems. It's actually Balzano, in his 1817 Rein 

analytischer Beweis des Lehrsatzes ... ,37 who gives the first 
purely arithmetical proof of a theorem involving continuous 

36 IYI re which, again, see directly below and §4 even more below. 
37 IYI = "Purely Analytical Proof .... " The full title is 22 words long 

and you do not want it. 
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functions. )B In this same book he supplies what is now con
sidered to be the correct mathematical definition of continu
ity: f(x) is continuous in interval A if at any point a in A the 
difference f(a + 8)-f(a) can be made as small as you want 
by making B arbitrarily small. What Balzano really is is 
another vivid instance of math-fame's caprice. Some of this 
will be contextlessly ante rem here, but be apprised that, for 
example, his method for determining whether a series is con
tinuous still gets used today-and is attributed to Cauchy. Or 
that Bolzano was the first mathematician to come up with a 
function that's continuous but not differentiable (i.e., has no 
derivative), a result that overturned early calc's assumption 
that continuity and differentiation went hand in hand-and 
was completely ignored, w/ K. Weierstrass's construction of a 
similar function 30 years later getting hailed as its 'discovery'.39 

All this will end up being more important than it looks 
right now, particularly the idea of continuity as an arithmeti
cal property. It's Bolzano's later work on infinite quantities40 

38 The specific proof is that algebraic polynomials are continuous, 

which is less relevant than the connections between a function being con· 
tinuous in an interval and a series/sequence of functions being convergent 

in an interval. These connections start becoming really important in §5. 
39 To get still further ahead of ourselves: Discussed at some length in 

§Se will be an important hypothesis of Bolzano's about infinite sequences 

and limit points, a hypothesis that Weierstrass also rediscovered and 

proved, though here history has thrown B. B. a bone and called this the 

Balzano-Weierstrass Theorem, which Theorem as it happens is important 

to R. Dedekind's theory of irrational numbers. (FYI, there's no suggestion 

that Weierstrass ripped Bolzano off or anything. These sorts of parallel dis

coveries happen all the time in math.) 
40 namely his 1851 Paradoxien des Unendlichen, which wasn't even avail

able in English (as Paradoxes of the Infinite) until 1950. 
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that's apposite here, though, if only because it's the most 
important historical link between Galileo's Two New Sciences 
and the work of Dedekind/Cantor. For one thing, Bolzano 
(who was kind of a heretic, both mathematically and reli
giously (e.g., he eventually got dismissed from U. Prague for 
giving anti-war sermons)) is the first mathematician since 
Galileo to address explicitly the distinction between Aristo
tle's actual and potential infinities. Like TNS, Bolzano's Para
doxes of the Infinite is deeply anti-Aristotelian, though there 
are also important differences-Bolzano's arguments are a 
lot more mathematical than G. G.'s, as is the arguments' 
motive. To mention once again some stuff that's going to get 
developed in more detail below, the impetus behind P. of the I. 
has to do with certain metaphysical difficulties involved 
in calculus's deployment of oo-related quantities and incre
ments. Pretty much all postcalculus mathematicians had tried 
to dodge or obfuscate these difficulties by vaguely invoking 
Aristotle and assuming that all the oos they were tossing 
around were only potential or 'incomplete' (this was the basic 
idea behind Cauchian limits). That Balzano attempted to 
blow large ragged holes in this assumption is one reason why 
his work got so little attention. It's also why Prof. G. Cantor, 
who tends to be uniformly venomous about most historical 
treatments of oo, often singles Bolzano out for special praise.41 

P. of the I. is a product of Bolzano's combined interests 
in functions, infinite collections, and the Real Line. As it 
happens, the book is only a few concepts short of inventing 

41 m See for example the English version of Cantor's "Foundations of 

the Theory of Manifolds," which is in the Bibliography under ARTICLES & 

ESSAYS. 
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modern set theory-'modern' in the sense of being able to 
handle infinite sets.42 One of the big ways it anticipates Can
tor's work is that it renders overt something that was only 
implicit in the Paradox of Galileo, namely the idea of one-to
one correspondence as a way to establish the equivalence of 
two sets. Bolzano's approach to Galileo's Paradox is purely 
abstract, and Cantorian. It consists in taking something that 
Galileo had attributed to limitations of the human mind and 
making it an intrinsic property of infinite sets-viz. the fact 
that a subset of an infinite set can have as many members as 
the set itself. As we're going to see, after G. Cantor (whose 
own work was controversial but not at all neglected), mathe
maticians understood that this property was in fact the dis
tinctive feature of infinite sets; and the formal math definition 
of infinite set is now based on this freaky equivalence. 

Notice also that Galileo's version of the equivalence con
cerned only the Big oos of all integers and all perfect squares. 
It's Balzano who first formulates the equivalences between 
the dense, Zenoish Little oos of the Real Line. He does this in 
P. of the I. by examining the set of all real numbers between 0 
and 1, i.e. the set of all points in the closed interval [O, l] on 
the R.L. Balzano sets up the elementary function 43 y = 2x 

and observes that if its domain's values of x are all the points 
in [ 0, l], the function will assign to each x one and only one 
y-value in the larger closed interval [O, 2]. So that .26 will cor
respond to .52, .74 to 1.48, .624134021 ... to 1.248268042 ... , 

42 As we'll see in §7, most of formal set theory is trivial if you assume 

that only finite sets exist. 
43 Like Cantor, Bolzano has a gift for giving simple, pictorially com

pelling proofs of very abstract propositions. 
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and so on. In other words, a perfect one-to-one correspon
dence: There are exactly as many R.L.-points in [O, 1] as there 
are in [ 0, 2]. And (as now appears obvious, but Bolzano was 
the first to point it out) simply by changing the function's 
x-coefficient to any other integer-y = Sx, y = 6,517 x-you 
can prove that there are exactly as many real numbers 
between 0 and 1 as between 0 and any other finite number 
you can think of. >t 

•JYJ-GRADE INTl!RPOLATION 

Actually, as was tossed off in §2e, the number of points in 
[ 0, 1] is ultimately equal to the ao of points on the whole Real 
Line stretching infinitely in both directions. Though the for
mal proof of this is pretty involved, 44 a demonstration of the 
equivalence is within the capacities of the average 4th-grader. 
Take the Real Line-segment corresponding to [ 0, 1] and stick 
it above the entire R.L., then place a compass's pointy part on 
the segment's exact midpoint and draw the lower half of a 
circle C whose diameter is 1,45 and arrange it all like so: 

0 

-.81 -.5642 0 l 1.26 l.894 

44 IYI q.v. §7d; or, if you're flipping back from §7d, now you can see 

why we went into this equivalence in such detail here. 
45 meaning the diameter's the [O, l] interval itsel£ (IYI The length of the 

hemispheric arc will obviously be I' but we don't really care about that.) 
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Pick any point on the Real Line and draw a straight line L 
from that point to the center of C, i.e. to the diameter's mid
point. Wherever L hits the hemisphere, draw a line straight 
up to hit the [O, l] diameter, again like so: 

0 

-.81 -.5624 0 I 1.26 1.894 

Thus every point on the R.L. can, via an L1, L2, ~' ••• , L", be 
shown to correspond one-to-one with a point in [O,IJ. Q.E.D. 

END INTERPOLATION 

Technical prescience aside, Paradoxes of the Infinite is also 
remarkable for its metaphysical agenda. In this, too, it resem
bles TNS and some of Cantor's later work. Bolzano's basic 
deal is that he disavows the Aristo-Scholastic chain of being 
and believes the created universe to be both infinite in 
expanse and infinitely divisible. 'Eternity' is simply a tempo
ral oo, Like most religious mathematicians from Pythagoras to 
Godel,46 Bolzano believes that math is the Language of God 
and that profound metaphysical truths can be derived and 
proved mathematically. What he lacks, in terms of extending 
his insights about infinite size and density and equivalence into 
actual theorems, are the set-theoretic concepts of cardinality, 

46 This includes Cantor in some of his less guarded and/or stable 

pronouncements. 
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ordinality, and power as they apply to collections of points.47 

He can establish and prove the strange equivalence of infinite 
sets/subsets, and can foresee that their relation is not contra
dictory but paradigmatic; but he has no way to turn his 
proofs into an actual theory of infinite sets and their rela
tions, behavior, etc. The main reason for this-strange 
though it may sound right now-is that in Bolzano's era 
there isn't yet any coherent theory of the real-number sys
tem, no rigorous def. of irrational number. 

§4a. The scholarly consensus is that there have been 
three big periods of crisis in the foundations of Western 
math. The first was the Pythagorean incommensurables. The 
third is the era (which we're arguably still in) following Godel's 
Incompleteness proofs and the breakdown of Cantorian set 
theory. 1 The second great crisis surrounded the development 
of calculus. 

The idea now is going to be to trace out how transfinite 
math gradually evolves out of certain techniques and prob
lems associated with calculus/analysis. In other words, to 
build a kind of conceptual scaffold for viewing and appreciat
ing G. Cantor's achievements. 2 As mentioned, this means 

47 IYI Again, these all get defined and discussed in §7. 
1 Command Decision: We're going to quit saying 'see below' all the time 

and simply assume that from here on it will be obvious when it applies. 
2 IYI As mentioned, the rhetorical aim here is to rig the discussion so 

that it's not grotesquely reductive but is simple and clear enough to be fol

lowable even if you've had no college math. It's true that it would be nice if 

you've had some college math, but please rest assured that considerable 
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going diachronically back to where the original timeline left 
off at the end of §3a. 

So then now we're near the end of the seventeenth cen
tury, the time of the Restoration and the Siege of Vienna, 
of towering perukes and scented hankies, etc. Doubtless 
you know already that calculus was the most important 
mathematical discovery since Euclid. A seminal advance in 
math's ability to represent continuity and change and real
world processes. Some of this has already been talked about. 
You probably also know that I. Newton or/and G. W. Leibniz 
are usually credited with its discovery. 3 You might also 
know-or at least have been able to anticipate from §3a's 
timeline-that the idea of exclusive or even dual credit is 
absurd, as is the notion that what's now called the calculus 
comprises any one invention. By even the simplest account
ing, royalties would need to be shared by a good dozen math
ematicians in England, France, Italy, and Germany who were 
all busily ramifying Kepler and Galileo's work on functions, 
infinite series, and the properties of curves, motivated 
(meaning the mathematicians were, as has also been men
tioned) by certain pressing scientific problems that were also 
either math problems or treatable as same. 

Here were some of the most urgent motivating problems: 
calculating instantaneous velocity and acceleration (physics, 

pains have been taken and infelicities permitted in order to make sure it's 

not required. 
3 In fact there was a big row in European math over which one of them 

really invented it, specifically over whether Leibniz, whose first calc-related 

paper was in 1674, had plagiarized Newton, whose De analysi per aequa

tiones numero terminorum infinitas circulated privately in 1669. 
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dynamics); finding the tangent to a curve (optics, astron
omy); finding the length of a curve, the area bounded by a 
curve, the volume bounded by a surface (astronomy, engi
neering); finding the maximum/minimum value of a func
tion (military science, esp. artillery). There were probably 
some other ones, too. We now know that these problems are 
all closely related: they're all aspects of calculus. But the 
mathematicians working on them in the 1600s didn't know 
this, and Newton and Leibniz do deserve enormous credit for 
seeing and conceptualizing the relations between, for exam
ple, the instantaneous velocity of a point and the area 
bounded by its motion's curve, or the rate of change of a 
function and the area given by a function whose rate of 
change we know. It was N. & L. who first saw the forest
meaning the Fundamental Theorem that differentiation and 
integration are mutually inverse-and were able to derive a 
general method that worked on all the above-type problems. 
On the mystery of continuity itself. Although not without 
having to dance around some nasty crevasses in this forest, 
and certainly not without all sorts of other people's prelimi
nary arboreal results and discoveries. Those in addition to the 
ones already timelined include, e.g.: 1629-P. de Fermat's 
method for finding the max. and min. values of a polynomial 
curve; 1635ish--G. P. de Roberval's discovery that a curve's 
tangent could be expressed as a function of the velocity of a 
moving point whose path composed the curve4

; 1635-B. 
Cavalieri's Method oflndivisibles for calculating the areas under 
curves; 1664-1. Barrow's geometrical Method of Tangents. 

4 Sorry about the hideous syntax here; there's no nice way to compress 
Roberval. 
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Plus, c. 1668, there's a great prescient , in the preface to 

J. Gregory's Geometriae Pars Universalis whose upshot is 
that the really important division of math is not into the 

geometrical v. the arithmetical but into the universal v. the 

particular. Why this is prescient: Various mathematicians 
from Eudoxus to Fermat had invented and deployed calc

type methods, but always geometrically and always in rela

tion to specific problems. It's Newton and Leibniz who 

combine the various methods of Latitudes and Indivisibles 
& c. into a single arithmetic technique whose breadth and 

generality (i.e., its abstractness) are its great strength.5 The 
two's backgrounds and approaches are different, though. 
Newton comes to calculus via Barrow's Method of Tangents, 

the Binomial Theorem, and Wallis's work on infinite series. 
Leibniz's route involves functions, patterns of numbers called 

'sum-' and 'difference-sequences,' and a distinctive meta
physics6 whereby a curve could be treated as an ordered 

sequence of points separated by a literally infinitesimal 

distance. (In brief, curves for Leibniz are generated by 

5 This is why trying to settle the credit question by saying that Newton 
invented differential calculus and Leibniz invented integral calculus 

(which some math teachers like to do) is confusing and wrong. The whole 

point is that N. & L. understood the Problem of Tangents ( = instanta

neous velocity) and the Problem of Quadratures ( = areas under curves) to 

be two aspects of a single larger problem ( = that of continuity) and thus 
treatable by the same general method. The whole reason N. & L. are math 

immortals is that they didn't split calc up the way intro courses do. 
6 Leibniz, like Descartes, being also of course a big-time philosopher, 

of whose ontology you may have heard terms like 'individual substance,' 

'transcreation,' 'identity of indiscemibles,' and 'windowless monad'. 
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equations, whereas quantities varying along a curve are given 
by functions (pretty sure we've mentioned that he copy
righted 'function').) 

We're not going to get too much into the Newton-v.-Leib
niz thing, but the metaphysical differences in the way they 
viewed infinitesimal quantities are highly germane.7 Newton, 
at heart a physicist who thought in terms of velocity and rate 
of change, used infinitely tiny increments in his variables' 
values as disposable tools in arriving at the derivative of a 
function. Newton's derivative was basically a Eudoxian-type 
limit of these increments' ratio as they got arbitrarily small. 
Leibniz, a lawyer/diplomat/courtier/philosopher for whom 
math was sort of an offshoot hobby,8 had an aforemen
tionedly idiosyncratic metaphysics that involved certain 
weird, fundamental, infinitely small constituents of all real
ity, 9 and he pretty much built his calculus around the rela
tions between them. These differences had methodological 
implications, obviously, with Newton seeing everything in 
terms of rates of change and the Binomial Theorem and thus 
tending to represent functions10 as infinite series, v. Leibniz 
preferring what are known as 'closed forms' and avoiding 
series in favor of summations and straight functions, includ
ing transcendental functions when algebraics wouldn't work. 
Some of these differences were just taste--e.g., the two used 

7 IYI Some of the following might be a bit eyeglazing in the abstract, 

but it will make more sense shortly when we look at a simple example. 
8 Surely we all hate people like this. 
9 IYI these being the monads mentioned three FNs up. 
10 IYI even functions involved in area problems. 
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totally different notations and vocab, although Leibniz's was 

better and mostly won out. 11 For us, the important thing is that 
both men's versions of calculus caused serious problems for 

mathematics as a deductive, logically rigorous discipline, and 

were vigorously attacked at the same time that they enabled all 
sorts of incredible results in math and science. The source of 
the foundational shakiness should be easy to see, whether the 
problem appears more methodological {as in Newton's case) 

or metaphysical (as in G. W. L.'s). As has been mentioned in 
§2b and probably elsewhere (and is well known anyway), the 

trouble concerns infinitesimals, which all over again in the late 
1600s force everybody to try to deal with the math of oo. 

The best way to talk about these problems is to sketch the 

way early calculus works. We're going to do a somewhat non
standard, quadrature-type derivation that manages to illustrate 

several different aspects of the technique at once so that you 
don't have to sit through a bunch of different cases. We're also 

going to sort of mix and match N. & L. 's different methods and 
terminology, since the aim here isn't historical accuracy but 
clarity _of illustration. For the same reason, we'll eschew the 

usual how-to-find-the-tangent or how-to-go-from-average

speed-to-instantaneous-speed cases most textbooks use. 12 

Refer first to what we'll call Exhibit 4a, which please note 
isn't even remotely to scale but does have the advantage of 

11 IYI Among other Leibnizisms are 'differential calculus,' 'integral cal
culus,' 'dx,' and the good old vermiculate integral sign 'f,' which latter 

(Gorisian factoid:) Leibniz originally meant as an enlarged S denoting "the 

sum of the [y-coordinates] under a curve." 
12 N.B. re possible IYI: If you've got a strong math background, feel free 

to skip the following Exhibit and gloss altogether-the simplifications may 
bother you more than it's worth. 
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making stuff easy to see. For the same reasons, the relevant 
'curve' in Exhibit 4a is a straight line, the very simplest kind 
of curve, w/r/t which the calculations are minimally hairy. 13 

E4a's curve here can be regarded either as a set of points pro
duced by a continuous function on a closed interval or as the 
path of a moving point in 2D space. For the latter, Newton
ian case (which is what most college classes seem to prefer), 
note that here the vertical axis indicates position and the hor
izontal axis is time, i.e. that they're reversed from the axes in 
the motion-type graphs you're apt to have had in school 
(long story; good reasons). So: 

Exhibit 4a 

First, posit that A, the area under the curve, is equal to x2
• 

(This will seem strange because E4a's curve is a straight line, 

13 IYI For readers w/ strong backgrounds who nevertheless haven't 

skipped all this but are noticing already that Exhibit 4a looks like a very 

simplified illustration of Leibniz's "difference quotient," and are maybe 

wondering why we don't just go ahead and do his famous Characteristic 
Triangle, the answer is that using the C.T. would cause the problems' expli

cation to eat 6+ pages and subject everybody to too much calc-detail that 

ends up not being important. 
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so it looks like A really ought to be xy; but for most curves 
drawn exactly to scale x2 is going to work, so here please just 
play along and pretend that y exactly equals x.) Meaning for
mally we assume that: 

( 1) A = x 2
• Then posit that x increases by some infinites

imally tiny quantity t, 14 with the area under the curve 
consequently increasing by tz. Given this, and given 
the equality in ( 1 ), we have: 

(2) A+ tz = (x + t)2. Multiplying out (2)'s binomial, 
we get: 

(3) A+ tz = x2 + 2xt + t 2
• And since, by (1), A= x 2

, 

we can reduce (3) to: 
(4) tz = 2xt + t2

• Now watch close. We take (4) and 
divide through by t to get: 

(5) z = 2x + t. Watch again: since we've defined t as infin

itesimally tiny, 2x + t is equivalent, in finite terms, to 
2x, so the relevant equation becomes: 

(6) z = 2.x.. At which point fini. What-all this shows we'll 
see in a moment. 

You will likely have noticed some serious shiftiness in this 
derivation's treatment of infinitesimal quantity t. In the move 
from ( 4) to (5), t is sufficiently > 0 to be a legal divisor. 
In the move from (5) to (6), though, t appears to be= 0, 
since t added to 2x yields 2.x.. In other words, t is being 
treated as 0 when it's convenient and as > 0 when it's 

14 Again, if E4a is treated as a rate-of-change problem, tis an infinitesi

mal instant. (m If you've encountered the somewhat unfashionable 
term infinitesimal calculus in connection with classical calc, you can now 

see that the term derives from the infinite tininess of quantities/durations 
like t.) 
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convenient,15 which appears to create the contradiction 
(t = O) & (t ¢ 0), which-as you'll recall from the previous 
discussion of reductio-type proofs-seems like ample grounds 
for going back and saying there's got to be something wrong 
with using infinitesimal quantities like t. At the very least, the t 
thing looks like a notational trick, some math version of 
Cooking the Books in accountancy. 16 

Except here's the thing. If you blink the apparent contra
diction, or at least hold off on running a reductio on it, a 
derivation like E4a's (which, notwithstanding its resemblance 
to Leibniz's Characteristic Triangle, is actually a simplified 
version of the process Newton uses in De Analysi17

) turns out 
to be a truly marvelous piece of mathematical ordnance, one 

15 N.B. that according to Leibniz this is precisely what infinitesimals 

are-they're critters you can do this with. See for example this excerpt 

from a letter to J. Wallis around 1690: 

It is useful to consider quantities infinitely small such that when 

their ratio is sought, they may not be considered zero but which are 

rejected as often as they occur with quantities incomparably greater. 

Thus if we have x + [ t], [ t] is rejected. But it is different if we seek 

the difference between x + [ t) and x . ... 

16 An even better analogy might be an experimental scientist Skewing 

his Data to confirm whatever hypothesis he wants confirmed. 
17 IYI Newton's examples in D.A. were messier and depended more on 

the Binomial Theorem, whereby an equivalence like z = rx" (where r is a 

constant and the n may be a fraction or even negative) can be expanded to 
show that rx" • s rate of change will always = nrx"- 1

• This is what allows for 

the theoretically infinite chain of higher derivatives in college math. As in 

the lst derivative of, e.g., y = x4 is 4x}; the 2nd derivative is 12x2
, and so 

d" 
on, until any nth derivative can be found via the ratio d": -although you 

usually don't get into anything higher than 2nd derivatives in regular calc. 
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that yields at least two crucial results. Result #1 is that the 
rate of change of x 2 can be shown to be 2x if you accept the 

(x + t) 2 
- x 2 

• • 
computation t as representing the change m x 

during the 'instant' t. 18 Result #2 is that you can show the rate of 
change of area A to be the 'curve' (namely E4a's y (remember 
that a straight line is a kind of curve)) that bounds A. To see 

h. A + tz - A d I tz h d' 'd t is, compute t an cance to get t' t en iv1 e 

through by the suspiciously convenient t to get z, which 
remember is only 'infinitesimally greater' than y and so here 
can be regarded as = y. 19 You end up with y = 2.x, which 
happens to be the function that produces Exhibit 4a's curve. 
Which means that packed into the result y = 2x is the basic 
principle of integral calc: the rate of change of the area 
bounded by a curve is nothing other than that very curve. 
Which in turn means that the integral of a function that has a 
given derivative is the function itself, which happens to be 
the Fundamental Theorem of the Calculus, 20 viz. that differen
tiation and integration are inversely related21 the same way 

18 Observe, though, that you have to use the same sort of questionable 

accounting practices in this calculation: 

(x + t) 2 
- x 2 

(1) t -

(2) xz + 2tx: t1 - x2, which= 

(3) 2tx: t
2

, at which point you asswnethat t .. 0 and divide through to get: 

(4) 2x + t, whereupon you assume that t = 0 and toss it out to get: 

(5) 2.x. 
19 Or you can get the same result by treating z as effectively equivalent 

to yin equation ( 6) of the original derivation. 
20 IYI as first articulated by Leibniz in 1686. 
21 IYJ This is why syllabiphiles call integration 'antidifferentiation'. 
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multiplication/ division and exponents/roots are, which is 
why the calculus is so powerful and N. & L. deserve so much 
credit-the F.T.C. combines both techniques in one high
caliber package (. .. so long as you accept the equivocations 
about whether t = O}. 

This is, however, not the way most of us had these matters 
explained in school. If you took Cale I, chances are that you 
learned, via velocity-and-acceleration graphs, to 'take the 

l. . f A , h , dy Lim Ay , . h , dy, b . Le"b . , 
1m1t o u.x, or t at d.x = x---+'-" Ax, wit dx emg 1 niz s 

notation and the limit concept being postcalc analysis's sub
sequent way of finessing the whole problem of infinitesimals. 
You might, for example, know or recall that in most modern 
textbooks an infinitesimal is defined as 'a quantity that yields 
0 after the application of a limit process'. If you are an actual 
Cale I survivor, you surely can also remember how brutally 
abstract and counterintuitive the limits thing is to try to 
learn: almost nobody ever tells undergraduates the whys or 
whences of the method,22 or mentions that there's an easier 
or at least more intuitive way to understand dx and Ax and 

22 In this context, what the limits method really is is a metaphysical 

accounting trick that makes infinitude/infinitesimality a feature of the cal

culation process rather than of the quantities calculated. As should be evi

dent by now, the regular laws of arithmetic don't work on oo-related 

quantities; but by basically restricting itself to partial sums through 99% of 

the calculation, limits-based calculus lets these rules apply. Then, once the 

basic calculation is completed, you 'take the limit' and let tor d.x or what

ever 'approach O,' and extrapolate your result. In pedagogical terms, the 

math student is asked here to presume that certain quantities are finite and 

stable for calculation purposes but then vanishingly tiny and protean at the 

actual results stage. This is an intellectual contortion that makes calculus 

seem not just hard but bizarrely and pointlessly hard, which is one reason 

why Cale I is such a dreaded class. 
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t, namely as orders of ! . Most teachers instead try to distract 
students with snazzy examples of calculus's ability to solve all 
kinds of complex real-world problems--from instantaneous 
velocity and -acceleration as 1st and 2nd derivatives, to 
Kepler's elliptical orbits and Newton's F = m(dx), to the 
motions of sprung springs and bouncing balls, eclipses' 
penumbrae, loudness as a function of a volume-knob's rota
tion; not to mention the trigonometric vistas that open up 
when you learn that d(sin x) =cos x and d(cos x) = - sin .x, 

that the tangent is the limit of the secant, etc. These are usually 
presented as the inducements for mastering the limits concept, 
a concept that is really no less abstract or algesic than trying to 
conceive of dx or t as just incredibly, mindbendingly tiny .. 

As should be understandable from the foregoing, the true 
motive behind the limits approach to cak was that Newton 
and Leibniz's infinitesimal quantities and notational sleights 
of hand had opened up some nasty cracks in math's founda
tions, given that the proposition '(x = O) & (x ;o! O)' violates 
all sorts of basic LEM-ish axioms. Given our Story so far, the 
easiest thing to say appears to be that most of the supposed 
problems here were actually caused by math's inability to 
handle infinite quantities-that, as with Zeno's Dichotomy 
and Galileo's Paradox, the real difficulty was that no one yet 
understood the arithmetic of oo. It wouldn't exactly be wrong 
to say this, but for our purposes it would be at least semi
impoverished.23 As with everything else about math after cal
culus, the real problems and stakes here are more complex. 

23 m (and maybe not even a good idea to mention) There is, as a 

matter of fact, a nontrivial way to say the same thing, but it involves non

standard analysis, which is the invention of one A. Robinson in the '70s 
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§4b. Let's restate and summarize a bit. The sheer power 

and significance of calculus presented early-modem math with 
the same sort of crisis that Zeno's Dichotomy had caused for 

the Greeks. Except in a way it was worse. Zeno's Paradoxes 
hadn't solved any extant problems in math, whereas the tools of 

calculus did. The panoply of real-world results that calc enabled 
has already been detailed, as has the extraordinary timing
every kind of applied science is butting up hard against prob

lems of continuous phenomena just as Newton and Leibniz and 

their respective cadres come up with a mathematical account of 

continuity.24 One that works. One that leads directly to the great 
modem decoding of physical laws as differential equations. 

Except foundationally it's a disaster. The whole thing's built 

on air. The Leibnizians25 couldn't explain or derive actual 
quantities that were somehow not 0 but still infinitely close to 0. 

and professes to rigorize infinitesimals in analysis via the use of hyperreal 

numbers, which themselves basically combine the real numbers and Cantorian 

transfinites---meaning the whole thing's heavily set-theoretic and Cantor

dependent, plus controversial, and wildly technical, and well beyond this 

discussion's limits ... but nongrotesqueness appears to require at least men

tioning it, and maybe commending w/r/t any burning further interest on 

your part Prof. Abraham Robinson's Nonstandard Analysis, Princeton U. 

Press, 1996. 
24 This probably needs to be explained instead of just asserted over and 

over. In classical calculus, continuity is treated as essentially a property of 

functions: a function is continuous at some point p if and only if it's differ

entiable at p. This is why Balzano and Weierstrass's finding those continu

ous but nondifferentiable functions in the 1800s will be such a big deal, and 

why modern analysis's theory of continuity is now a lot more complicated. 
25 IYI meaning mainly the two J. Bernoullis and J 1's son D., plus G. F. A. 

l'Hopital, who'd been one of the J.s' patron (the Bernoullis are hard to 

keep straight), all flourishing in, say, the early 1700s. 
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The Newtonians,26 who claimed that calculus didn't really 
depend on infinitesimal quantities but rather on 'fluxions' -w/ 
ftuxion meaning the rate of change of a time-dependent 
variable-foundered on the requirement that the ratios of these 
fluxions be taken just as they vanish into or emerge from 0, 
meaning really the infinitesimal first or last instant when 
they're > 0, which of course is just trading infinitely tiny quan
tities for infinitely brief instants. And the Newtonians had no 
better account of these instantaneous ratios than the Leib
nizians did of infinitesimal quantities.27 The only real advantage 

26 m =primarily the U.K.'s E. Halley, B. Taylor, and C. Maclaurin, 

also early 1700s. 
27 IYI It so happens that Bishop G. Berkeley (1685---1753; major empiri

cist philosopher and Christian apologist (and a world-class pleonast)) has 

a famous critique of classical calc along just these lines in an eighteenth

century tract whose 64- (yes, 64-) word title starts with "The Analyst . .. .'' 

A representative snippet being: 

Nothing is easier than to devise expressions or notations for fluxions 

and infinitesimals .... But if we remove the veil and look underneath, 

if, laying aside the expressions, we set ourselves attentively to consider 

the things themselves which are supposed to be expressed or marked 

thereby, we shall discover much emptiness, darkness, and confusion; 

nay, ifl mistake not, direct impossibilities and contradictions. 

Berkeley's broadside is in some ways Christianity's return-raspberry to 

Galileo and modem science (and it's actually great cranky fun to read, though 

that's neither here nor there). Its overall point is that eighteenth-century math, 

despite its deductive pretensions, really rests on faith no less than religion does, 

i.e. that "[H]e who can digest a second or third fluxion, a second or third 

[derivative], need not, methinks, be squeamish about any point in divinity." 

On the other hand, M. J. l.R. d'Alembert (1717-1783, big post-calc mathe

matician and all-around intellectual, plus one of the first proponents of the 

idea that "the true metaphysics of the calculus is to be found in the idea of a 

limit") objects to infinitesimals on wholly logical LEM grounds in the 

famous Encyclopedie he coedited with D. Diderot in the 1760s, as in e.g.: "A 
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of the Newtonian version (for everyone but Cale I students) is 
that it already has the limit concept sort of implicitly contained 
in the idea of a vanishingly tiny first/last instant-it would be 
mostly A.-L. Cauchy, then later K. Weierstrass, who drew all 
this out. (Weierstrass, by the way, was a teacher of Cantor's.) 

Apropos continuity and infinitesimals and calculus, it's 
worth looking quickly at one more of Zeno's anti-motion 
Paradoxes. This one's usually called the Arrow, because it con
cerns the time-interval during which an arrow is traveling 
from its bow to the target.28 Zeno observes that at any specific 
instant in this interval, the arrow occupies "a space equal to 
itself," which he says is the same as its being "at rest." The 
point is that the arrow cannot really be moving at an instant, 
because motion requires an interval of time, and an instant 
here is not an interval; it's the tiniest temporal unit imaginable, 
and it has no duration, just as a geometric point has no dimen
sion. And if, at each and every instant, the arrow is at rest, then 
the arrow does not ever move. In fact nothing whatsoever 
moves, really, since at any given instant everything is at rest. 

There's at least one implicit premise in Zeno's argument, 
which schematizing helps make overt: 

( 1) At each and every instant, the arrow is at rest. 
(2) Any interval of time is composed of instants. 
(3) Therefore, during any interval of time, the arrow 

isn't moving. 

quantity is something or nothing; if it is something, it has not yet vanished; if 

it is nothing, it has literally vanished. The supposition that there is an inter

mediate state between these two is a chimera." 
28 m The Arrow, like the Dichotomy, gets discussed in Book VI of 

Aristotle's Physics; it also appears in fragmentary form in Diogenes 

Laertius's Lives and Opinions. 
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The covert premise is (2), which is just what Aristotle attacks in 
the Physics, dismissing the whole Z.P. on the grounds that " ... 
time is not composed of indivisible instants,"29 i.e. that the very 
notion of something being either in motion or at rest at an 
instant is incoherent. Notice, though, that it is precisely this 
idea of motion at an instant that N. & L's calculus is able to 
make mathematical sense of-and not just general motion but 
precise velocity at an instant, not to mention rate-of-change
in-velocity at an instant ( = acceleration, 2nd derivative), rate
of-change-in-acceleration at an instant ( = 3rd derivative), etc. 

Arrow-wise, the fact that classical calc is able to handle 
precisely what Aristotle says can't be handled is not a coinci
dence. First off, have another glance at the thing c:ibout an 
instant having "no duration" two 'fs back, and see that this 
term is somewhat ambiguous. It turns out that the kind of 
instant Zeno is talking about is, at least mathematically, not 
something of 0 duration, but an infinitesimal. It has to be. 
Consider again the hoary old jr.-high formula for motion, 

Rate X Time = Distance, or r = 1· An arrow at rest has an 

r of 0 and covers Od, obviously. But if, timewise, an instant = 0, 

then Zeno's scenario ends up positing 0 as the divisor in r = 1, 
which is mathematically illegal/fallacious in the same way the 

whole 'O = ~' is illegal/fallacious. 

29 IYI It goes without saying that the compatibility of this claim with 

Aristotle's time-series objections to the Dichotomy in §2b is somewhat 
dubious. There are ways to reconcile A.'s two arguments, but they're 

very complicated, and < 100% convincing-and anyway that's hardcore 
Aristotle-scholar stuff and well outside our purview. 
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Except here we have to be careful again, just as with the 
other Z.P .s. As has been mentioned in all kinds of different 
contexts already, there's 'handling' something v. really 
handling it. Even if we grant that Zeno's instant is an infini
tesimal and thus ripe for treatment by Newtonian fluxion or 
Leibnizian dx, you can probably already see that a classical
calc-type 'solution' to Zeno's Arrow is apt to be trivial in the 

same way that ' ( 
1 
~ r)' is trivial w/r/t the Dichotomy. That is, 

the Arrow is really a metaphysical paradox, and it's precisely 
a metaphysical account of infinitesimals that calc hasn't got. 
Without such an account, all we can do is apply to the Arrow 
some sexy-looking formula that will depend on the same mys
terious and paradoxical-looking infinitesimals that Zeno's 
using in the first place; plus there will still be the unsettling 
question of how an arrow actually gets to the target over an 

interval comprising infinitely many !-size instants.30 

The problem is that where the Arrow is metaphysical it is 
also extremely subtle and abstract. Consider for instance 
another hidden premise, or maybe a kind of subpremise 
that's implicit in Zeno's (1): is it really true that something's 
got to be either moving or at rest? At first it certainly looks 
true, provided we take 'at rest' to be a synonym for 'not mov
ing'. Remember LEM, after all. Surely, at any given instant t, 
something is either moving or else not moving, meaning that 
it has at t either a Rate > 0 or a Rate = 0. That in truth this 
disjunction is not valid-that LEM doesn't really apply here
can be seen by examining the difference between the number 

30 IYI Feel free to review §2a's harangue about applying formulas v. 

truly solving problems, which applies here in spades. 
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0 and the abstract word 'nothing'. It's a tricky difference, but 
an important one. The Greeks' inability to see it was probably 
what kept them from being able to use 0 in their math, which 
cost them dearly. But 0 v. nothing is one of those abstract dis
tinctions that's almost impossible to talk about directly; you 
more have to do it with examples. Imagine there's a certain 
math class, and in this class there's a fiendishly difficult 
100-point midterm, and imagine that neither you nor I get 
even one point out of 100 on this exam. Except there's a differ
ence: you are not in the class and didn't even take the exam, 
whereas I am, and did. The fact that you received 0 points on 
the exam is thus irrelevant-your 0 means N/A, nothing
whereas my 0 is an actual zero. Or if you don't like that one, 

imagine that you and I are respectively female and male, both 
healthy and 20-40 years of age, and we're both at the doctor's, 
and neither of us has had a menstrual period in the past 
ten weeks, in which case my total number of periods is nothing, 
whereas yours here is 0-and significant. End examples. 

So it's simply not true that something's always got to be 
either 0 or not-0; it might instead be nothing, N/A.31 In which 
case there's a nontrivial response to Zeno's premise (1), to wit: 

the fact that the arrow is not moving at t does not mean that its 
rat tis 0 but rather that its rat tis nothing. That this slipperi
ness in premise ( 1) is not spotted right away is due in part 
to the 0-v.-nothing thing and in part to the vertiginous, 
Level-Four abstractness of words like 'movement' and 'motion'. 
The noun 'motion,' for example, is especially sneaky because it 
doesn't look all that abstract; it seems straightforwardly to 
denote some single thing or process-whereas, if you think 

31 IYI Regarding d'Alembert's objection to infinitesimals in FN 27 supra, 

it is just this third possibility that makes his argument unsound. 
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about it,32 even the simplest kind of motion is really a compli

cated relation between (a) one object, (b} more than one place, 
and ( c} more than one instant. Upshot: The fallacy of the Arrow 
lies in Zeno's assumption that the question 'Is the arrow in 
motion or not at instant t?' is any more coherent than 'What 
was your grade in this class you didn't take?' or 'Is a geometric 
point curved or straight?' The right answer to all three is: N/A.33 

Granted, this response to the Arrow is, strictly speaking, 
philosophical rather than mathematical. Just as a classical
calc-type solution will be philosophical, too, in the sense 

of having to make metaphysical claims about infinitesimals. 
Modern analysis's own way of dealing with this Z.P. is very 
different, and purely technical. If, again, you ever did the 
Arrow in college math, you probably learned that Zeno's spe
cious premise is (I) but heard nothing3• about an instant as 

an infinitesimal. This (again) is because analysis has figured 
out ways to dodge both the infinitesimal and the 0-as-divisor 
problem in its representations of continuity. Hence, in a 
modem math class, premise ( 1) is declared false because the 
arrow's r-at-instant-t can be calculated as 'the limit of average 

r's over a sequence of nested intervals converging to 0 and 
always containing t,' or something close to that. Be apprised that 

n IYI Here's a nice example of where some horizontal early-morning 

abstract thinking can really pay off. Once we're up and about and using 

our words, it's almost impossible to think about what they really mean. 
33 IYI Observe, please, that this is not at all the same as Aristotle's objec

tion to 'Is the arrow ... instant t?' What he thinks is really incoherent is 

premise (2)'s idea that time can be composed of infinitesimal instants, 

which is an argument about temporal continuity, under which interpreta

tion the Arrow can be solved with a simple calc formula. As you've probably 

begun to see, Aristotle manages to be sort of grandly and breathtakingly 
wrong, always and everywhere, when it comes to oo. 

34 (not 0) 
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the language of this solution35 is Weierstrassian: it's his refined 
limit-concept36 that will allow calculus to handle the related 
problems of infinitesimals and Zeno-type infinite divisibility. 

The specific relations between these problems are intricate 
and abstract, but for us they're totally apropos. However weird 
or foundationally corrosive infinitesimals are, it turns out that 
their disqualification from math/metaphysics creates some 
wicked little crevasses as well. Example: Without infinitesimals, 
it apparently makes no sense to talk about the 'next instant' or 
'very next split-second' -no two instants can be quite succes
sive. Explanation: Without infinitesimals, then respecting any 
two supposedly successive instants ti and t2, there are only two 
options: either there's no (meaning O) temporal interval 
between ti and t2, or there's some temporal interval > 0 
between them. If there's 0 interval, then t1 and ti are clearly not 
successive, because then they're the exact same instant. But if 
there is some temporal interval between them, then there are 
always other, tinier instants between ti and ti-because any 
finite temporal interval can always be subdivided tinier and 
tinier, just like distances on the Number Line.37 Meaning 

35 which solution, though 100% technical, at least has the advantage of 

recognizing that motion-at-an-instant is a concept that always involves 
more than one instant. 

J
6 IYI As we'll see in §5, what Weierstrass basically does is figure out 

how to define limits in a way that eliminates the 'tends to' or 'gradually 

approaches' stuff. Expressions like these had proved susceptible to Zenoid 

confusions about space and time (as in 'approaches from where?' 'how 

fast?' etc.), besides being just generally murky. 
J? This is the rub, and why the relation between infinitesimals and Zeno

type divisibility is sort of like that between chemo and cancer. The thing 

b . . th 1 h I I I I I I b ill h a out quant1ues at are ess t an 2, 4, S' 16, 
32

, · · ., n ut st greater t an 

0 is that you cannot get to them by dividing over and over and over again-
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there's never going to be a very next ti after t1• In fact, so long as 
infinitesimals are non grata, there must always be an infinite 
number of instants between t1 and "ti· This is because if there 
were only a finite number of these intermediate instances, then 
one of them, tx, would by definition be the smallest, which 
would mean that tx was the instant closest to t1, i.e. that tx was 
the very next instant after t1, which we've already seen is 

tx - ti 
impossible (because of course what about the instant - 2-?). 

If you're now noticing a certain family resemblance among 
this no-successive-instant problem, Zeno's Paradoxes, and 

some of the Real Line crunchers described in §2c and -e, be 
advised that this is not a coincidence. They are all facets of 
the great continuity conundrum for mathematics, which is 
that cxi-related entities can apparently be neither handled nor 

eliminated. Nowhere is this more evident than with !s. 

They're riddled with paradox and can't be defined, but if you 
banish them from math you end up having to posit an infi
nite density to any interval,38 in which the idea of succession 
makes no sense and no ordering of points in the interval can 
ever be complete, since between any two points there will be 
not just some other points but a whole infinity of them. 

Overall point: However good calculus is at quantifying 
motion and change, it can do nothing to solve the real paradoxes 
of continuity. Not without a coherent theory of oo, anyway. 

the same way you can't get to a transfinite number by adding or multiplying 

finite numbers. co and ck are uniquely exempt from all the paradoxes of 

infinite subdivision and expansion ... even though they are in a sense the 

very embodiments of those paradoxes. So the whole thing is just very strange. 
38 meaning interval in time, in space, or on the Real Line-all three are 

continuity's turf. 
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§Sa. The job of these next couple sections is to show 
how Dedekind's and Cantor's innovations arose in more or 
less the same way calculus had-viz. as ways to handle certain 
problems which had become so pressing that math couldn't 
really advance without facing them. The idea in §5 is to sketch 
out the particular post-calc developments and controversies 
that create an environment in which transfinite math becomes 
possible, which is also to say necessary. Plus please notice the 
'sketch out'. There's no way to do a timeline, even a rough 
one, of the period 1700-1850. Too much happens too fast. 

In general, the situation of mathematics after 1700 is 
intensely weird, and much of the weird~ess has to do once 
again with the relations between empirical reality and con
ceptual abstraction. 1 As anyone who's moved from high
school to college math can attest, analysis is exponentially 
more abstract and difficult than anything that comes before. 2 

At the same time, its explanatory power is unprecedented 
and its practical applications go through the roof. This is 
mainly because of analysis's ability to quantify motion and 

1 If we stick in 'only more so' after every predicate, the last three 1 s of 

§3b can be made to apply here quite nicely all over again. 
2 M This difficulty, despite what Humanities majors often think, is not 

because of all the heavy-looking notation that can make flipping through a 

college math book so intimidating. The special notation of analysis is actu

ally just a very, very compact way to represent information. There aren't 

that many different symbols, and compared to a natural language it's 

ridiculously easy to learn. The problem isn't the notation-it's the extreme 

abstractness and generality of the information represented by the symbol

ism that makes college math so hard. Hopefully that makes sense, because 
it's 100% true. 
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process and change, and because of the greatly increased 
generality of physical laws expressed as differential equa
tions and/or trigonometric series. At the same same time, 
and just as with the development of classical calc, much 
of the mathematical progress from 1700 to at least 1830 is 
in response to scientific problems-again, some of these 
have already been mentioned. The point is even more 
emphatic here than it was in §3b: in everything from astron
omy to engineering, to navigation, to warfare, etc., the tools 
of analysis really worked. The result was what good old 
M. Kline calls "a virtual fusion of mathematics and vast areas 
of science." 

The advantages of this fusion are more obvious than its 
dangers. Recall once more that a priceless feature of math is 
supposed to be the deductive, a priori truth of its theorems. 
Scientific truths are established empirically; they're inductive 
truths, and as such are subject to all the abstract early-morning 
uncertainties detailed in § 1. Induction is, logically speaking, 
foundationless, whereas mathematical truths are built on the 
granite of axioms and rules of inference. All this has been 

discussed already, as have the connections between founda
tions and rigor, plus the thing in §3c's EMERGENCY GLOSSARY I 

about analysis trying (eventually) to inject more rigor into 
calculus. 

The point: It's not enough that mathematical theories 
work; they're also supposed to be rigorously defined and 
proved in a way that meets the great Greek deductive stan
dard. This is not what happened throughout much of the 
1700s, though. It was really more like a stock-market bubble. 
And it looked great for a while. The "virtual fusion" in which 
mathematical discoveries enabled scientific advances which 
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themselves motivated further math discoveries3 created for 
math a situation that resembled a tree4 with great lush prolif
erant systems of branches but no real roots. There were still 
no grounded, rigorous definitions of the differential, deriva
tive, integral, limit, or convergent/divergent series. Not even 
of the function. There was constant controversy, and yet at 
the same time nobody seemed to care.5 The fact that calculus's 
infinitesimals (and/or now the oo-type limits toward which 
quantities could 'tend' without ever quite arriving) worked so 
well without any coherent foundation-this sort of infected 
the whole spirit of analysis. Without anyone explicitly saying 
so, math began to operate inductively. 

It was in the areas of functions, differential equations, and 
trigonometric series that many of the 1700s' most significant 
advances and ghastly confusions arose. W /r/t our Story, 
it's going to be important to look at some of the specific 
math and science problems these concepts got used on. This 
in tum will require another relevant (though somewhat 

3 IYI meaning new results not only in established math but in whole 

new post-calculus fields, including differential equations, various kinds of 

infinite series, differential geometry, number theory, function theory, pro

jective geometry, calculus of variations, continued fractions, and so on. 
4 IY1 Notice we're back to the tree thing. 
5 Vide here not only d'Alembert's famous rationalization for not having 

a rigorous proof of the limits concept, "Just keep moving forward, and faith 

will come to you," but also this l 740ish pronouncement by A.-C. Clairaut 

(1713-1765, big math-physicist): "[It used to be that] geometry must, like 

logic, rely on formal reasoning in order to rebut the quibblers. But the 

tables have turned. All reasoning concerned with what common sense 

knows in advance, serves only to conceal the truth and to weary the reader 

and is today disregarded." 
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harder6
) EMERGENCY GLOSSARY, to which you are again wel

come to devote exactly as much time/attention as your back
ground and interest warrant (but which you should probably 
at least skim and then be ready to flip back to later if difficul
ties in situ might warrant), etc. 

EMERGENCY GLOSSARY II 

-Derivative (n.) v. Differential (n.) These need to be dis
tinguished even though they're so closely connected that a 
derivative is sometimes called a 'differential coefficient'. Recol
lect from E.G.I that a derivative is the rate of change of a func
tion w/r/t the independent variable. In the case of a simple 

function like y = f(x),7 the derivative is:. What the individual 

dy and dx here are, though, are differentials. In something like 
y = f(x), where xis the independent variable, the differential 

of x (that is, dx) is any arbitrary change in the value of x, in 
which case dy can be defined via dy = f'(x)dx, where f'(x) is 

the derivative of f(x). (Make sense? If f'(x) = :~,then dy is 

pretty obviously f'(x)dx.) 

An easy way to keep the two D-words straight is to 
remember that a derivative is literally the ratio of two 

6 Command Admission: Frankly, parts of E.G.II are going to be brutal, 

and on the whole this may be the hardest part of the entire booklet, and 

regrets are hereby conveyed. But it really is better to do it all here in one 

dense contextless chunk than to have to keep stopping and giving endless 

little defs. and glosses in the middle of describing people's actual work. It 

was tried both ways in drafts, and Evil1 < Evil2• 

7 m This universal symbolism for functions is courtesy of the prenomi
nate L. Euler, the great towering figure of eighteenth-century math. 
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differentials-which is how many Leibnizians actually 
defined the derivative in the first place. 
-Partial Derivative v. Total Differential is the pertinent dis
tinction for 'functions of several variables,'s i.e. those with 
more than one independent variable. A partial derivative is 
the rate of change of a multivariable function w/r/t one of the 
relevant variables, the others being treated as constants-so 
generally a function will have as many partial derivatives as it 
has independent variables. A special symbol that Dr. G. called 
the 'dyslexic 6' is used for partial derivatives, as in e.g. the 
partial derivatives of the function-equation for the volume of 

arightcylinder, V= 7Tr2h,whichareaV = 21Trhand oVh = 1Tr2
• or 0 

A total differential, on the other hand, is the differential of a 
function with more than one independent variable-which 
usually amounts to saying it's the differential of the depen
dent variable. 'o's get used for total differentials too. For a 
multivariable function like z = f(x,y), zs total differential dz 

af af 
will be-dx+-dy. ax ay 

These first two entries might seem excessively rarefied but 
are as a matter of fact required for 
-Differential Equations (a-c (with (b) being rather expan
sive)), which are the #1 math tool for solving problems in 
physics, engineering, telemetry, automation, and all manner 
of hard science. You usually just start flirting with D.E.s at the 
end of freshman math; it's in Cale III that you find out how 
ubiquitous and difficult they really are. 

8 = what school calls Multivariable Calculus, which is essentially the 
math of surfaces in 3-space-f(x, y)-of solids in 4-space-f(x, y, z)-etc. 
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(a) In a broad sense, differential equations involve relation
ships between an independent x, a dependent y, and some 
derivative(s) of y with respect to x. D.E.s can be thought of 
either as integral calc on some sort of Class IV hallucinogen 
or (better9

) as 'metafunctions,' meaning one level of abstrac
tion up from regular functions-meaning in turn that if an 
ordinary function is a sort of machine where you plug certain 
numbers in and get other numbers out, 10 a differential equa
tion is one where you plug certain functions in and get other 
functions out. The solution of a particular differential equa
tion, then, is always some function, specifically one that can be 
substituted for the D.E.'s dependent variable to create what's 
known as an 'identity,' which is basically a mathematical 
tautology. 

That may not have been too helpful. In more concrete' 1 

terms, a simple differential equation like ~~ = 3x2 
- 1 has as 

its solution that function for which 3x2 
- 1 is the derivative. 

This means what's now required is integration, i.e. finding just 
the function(s) that satisfies f(3x 2 

- 1) dx. If you've retained 
some freshman math, you'll probably see that J(3x2 

- 1) dx 
equals f(x) = x 3 

- x + C (with C being the infamous Con
stant of Integration12

), which equation is the same as 
y = x 3 

- x + C, which latter just so happens to be the general 

9 IYI The following was Dr. Goris's way of explaining differential equa

tions, which turned out to be clearer and more significant than the 

formula-heavy way they get presented in college math. 
10 IYI Gorisian factoid: The original Japanese ideogram for 'function' 

meant, literally, 'number-box'. 
11 so to speak. 
12 long story-please just be aware there is such a thing. 
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solution of the differential equation :: = 3x2 
- 1. This D.E.'s 

particular solutions will be those functions in which C takes 
some specific value, as in like y = x3 

- x + 2 and so on. 
(b) Graphwise, because of C and the general/particular 

thing, differential equations tend to yield 'families of curves' 
as solutions. The equations' expansions, on the other hand, 
normally yield sequences of functionr-and be advised that the 
move in analysis from sequences/series of quantities to 
sequences/series of functions ends up being crucial to the Story 
of oo. Historically speaking, this move characterizes math's 
transition from the 1700s' Euler-type analysis to the more 
Cauchyesque kind of the early-to-mid-1800s. As was briefly 
mentioned in §3, Baron A.-L. Cauchy is credited with the first 
real attempt to rigorize analysis; he came up with a more 
sophisticated, convergence-based limit concept and was able to 
define continuity, infinitesimals, and even oo in terms of it.13 

It was also Cauchy who first worked seriously on series of 
functions, in which the really crucial problems also involve 
convergence.* 

•(QUICK EMBEDDED INTERPOLATION to (b) 

-D.E.(b) is about to get complicated. Besides being invited 
to flip back to E.G.r where appropriate, you are here apprised 

13 All this is right there in the first chapter of Cauchy's famous Course 

d'analyse, e.g. for Js. and oo: "A variable quantity becomes infinitely small 

when its numerical value decreases indefinitely in such a manner as to 

converge to the limit O," and "A variable quantity becomes infinitely large 

when its numerical value increases indefinitely in such a manner as to con

verge to the limit oo" (with, however, as M. Kline points out, "oo mean[ing] 

not a fixed quantity but something indefinitely large"). 
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of two related facts: ( 1) Convergence is (or at least looks) very 
different for sequences/series of functions than for sequences/ 
series of quantities. For instance, what a convergent series of 
functions converges to is a certain function ... or rather it's 
more precise to say that the sum of a convergent series of 
functions will always converge to a function. 14 (2) There are a 
whole roiling slew of connections between the concepts of 
continuity for functions and convergence for series of func
tions. Luckily, only a few of them concern us, but on the 
whole these connections go right to the troubled heart of 
nineteenth-century analysis, and some of the stuff gets 
extremely involved. An example is a famous mistake Cauchy 
made, which is presented here just as an indication of how 
bound up continuity and convergence are w/r/t functions. 
Cauchy held that if the sum of a sequence of continuous 
functions GJ, Cp c2, ••• converges everywhere on a certain 
interval to a function C, then function C is itself continuous 
on that interval. Why this was important, and wrong, will 
hopefully become clearer in a couple §s. 

END Q.E.I. RETURN TO 12 of (b), IN PROGRESS) 

Since you can't really do partial sums on series of functions, it 
becomes important to devise general tests for the convergence 
of these series/sequences. A pioneering general test called 
the Cauchy Convergence Condition (or '3C') of the 1820s 
holds that an infinite sequence ao, al, ai, ... , an, ... con
verges (i.e., has a limit) if and only if the absolute value of 

14 Another advantage to thinking of differential equations as metafunc

tions is that, since sequences/series of functions are what D.E.s expand 

to, it makes sense that what, as it were, pops out the other end of such 

sequences/series is supposed to be a function. 
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(an+, - a11 ) is less than any specified quantity for every value 
of r, assuming n is sufficiently large. 15 

Final fact anent functions and convergence (which proba
bly should have been included in the above Q.E.I.): To show 
that a function Fis representable ( = expandable) as an infi
nite series, you have to be able to verify that the series con
verges at all points to F. Which obviously can't be done by 
summing an infinite number of terms; you need an abstract 
proof. This, too, will be important when we get to Cantor's 
early work in analysis. 

(c) One of the reasons differential equations are so hard 
in school is that there are many different types and subtypes 
of them, specified by all sorts of high-tech nomenclature
' order,' 'degree,' 'separability,' 'homogeneity,' 'linearity,' 'lag,' 
'growth-' -v.- 'decay factors,' etc. etc. For us, the most impor
tant distinction is between an ordinary differential equation 

and a partial differential equation. A partial D.E. involves 
more than one independent variable, and thus partial deriva
tives (hence the name), whereas an ordinary D.E. doesn't 
have any partial derivatives. Since most physical phenomena 
are complicated enough to require multivariable functions 
and partial derivatives, it is not surprising that the truly 
useful and significant differential equations are the partial 

15 IYI You might know or recall from college math that this is not at all 

like the general convergence test that's taught today. The reason is another 

semi-mistake of Cauchy's: it turns out that his original 3C can be rigor

ously proven only to be a necessary condition for convergence. A bona fide 

test for convergence also has to provide sufficient conditions,,. for which it 

turns out you need a theory of real numbers, which won't be available 

until the 1870s. 

,. (q.v. §le FN 14's rundown of necessary v. sufficient conditions) 
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ones. A couple other D.E. terms to know are boundary condi

tions and initial conditions, which have to do with specifying 
allowable values of y and/or whatever constants there are in 
the equation. The terms are germane because there are 
important connections between these conditions and the 
specification of certain Real Line intervals over which a func
tion can range, which latter will be critical for the mid-1800s' 
Weierstrassian analysis coming up in §Se. 
-The Wave Equation This is an especially famous and 
powerful partial D.E. Hugely influential in both pure and 
applied math, especially physics and engineering. 16 For our 
purposes, the relevant form is the lD or 'nonLaPlacian' form 
of the Wave Equation, which (IYI) looks like: 

a2y I a2y 
ax2 c2 at2 

-Trigonometric Series, which probably should have gotten 
covered in E.G.I, are basically series whose terms are written as 
the sines and cosines17 of various angles. The generic form is 

usually something like ~ + f ( ak cos kx + bk sin kx + · · ·). 
k~ I 

Trigonometric series play a major role in our Story, not only 
because they comprise Fourier Series as a subtype, 18 but also 

16 M Re the latter two, or in an astronomy class, you may have learned 

about the Wave Equation in association with Bessel Functions, which are 

particular solutions to the W.E. expressed in a special kind of 3D coordi

nate system. 
17 which of course are, strictly speaking, trigonometric functions, so you 

can see why trig series are a classic case of the series-of-functions stuff dis
cussed above in -Differential Equations (b). 

18 It actually wouldn't hurt to flip back to E.G.I and check out -Fourier 

Series again, especially the stuff about F.S.s being expansions of periodic 
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because certain very important functions can be represented 
by both trig series and partial differential equations. The con
nections between partial D.E.s and trig series go right to the 
root of what a function is, it turns out; and in fact the modem 
math definition of a function-which differs from E.G.I's ad 
hoc def. in specifying that the association between each x and 
its f(x) can be 100% arbitrary, with no rule or even explana
tion required19 -is the result of exhaustive work on the rela
tions between functions and their representations as series. 
-Uniform Convergence & Associated Arcana (a-e). These 
items involve E.G.I's definitions of interval and continuous 

[Unction as well as the stuff about the convergence of series of 
functions in the Cauchy part of -Differential Equations (b) 
just above. Besides being nece.5sary for understanding certain 
big pre-Cantor results in later §s, this entry will afford you 
some idea of the truly vertiginous abstraction of nineteenth
century analysis. 

(a) Core definition: A series of continuous functions of 
some x in some interval (p, q) is uniformly convergent if it 
converges for every value of x between p and q. There's also 
some boilerplate about 'remainders'20 of the series being arbi
trarily small that we can skip. The crux is that the sum of a 

functions. This is because trig series themselves tend to be periodic, meaning 

they basically repeat the same wave over and over-w/ 'period' referring to 

the time required for one complete oscillation, and y = sin x (alias the sine 
wave) being a prototypical periodic function. (M If you happen to recall the 

term oscillating series, this is a totally different and unconnected thing and 

should be purged from memory for the remainder of this booklet.) 
19 long story, more or less unfolds over the next few §s. 
20 Don't ask. 
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uniformly convergent series will itself be a continuous func
tion of x in the interval (p, q). 

(b) Just as not all series are convergent, not all convergent 
series are uniformly convergent. Nor are all convergent series 
monotonic:, which essentially means changing in the same 
direction all the time. Example of a monotonic decreasing 

series: the Dichotomous t + t + ~ + 1
1
6 + · · · 21

• 

( c) Related to the thing about series converging in a given 
interval (p, q) is the matter of a function f(x) being sectionally 
continuous in a given interval (p, q), which obtains when (p, q) 
can be divided into a finite number of subintervals, with f(x) 
being continuous in each subinterval and having a finite limit 
at each lower ( = p) and upper ( = q) endpoint. (Note here that 
'sectional' can also modify/specify monotonicness,22 i.e. that 
some but not all monotonic series are sectionally monotonic-a 
bit of ephemera you'll need on board for one part of §Sd.) 

(d) For complicated reasons, if a function is sectionally 
continuous, it will have only a finite number of discontinuities 
in its relevant (p, q) interval. Here's a name that makes 
total sense: a discontinuity is simply a point23 at which the fi.mc
tion f(x) is not continuous. Example: the semi-Fourierish 

sin(x - a) will 1 l h disc · · · wh Y = 
1 

( ) c ear y ave ontmwt.Ies at atever - cos x- a 

21 IYI A monotonic function, on the other hand, is one whose first derivative 

doesn't change its + /- sign regardless whether the derivative's continuous 

or not. (Pretty sure we're not going to have to deal with m.f.s, although 
Weierstrassian analysis tends to require everything but the sink.) 

22 IYI Nominative form = 'monotony'? Surely not. Nothing on the 

math-noun in any sources .... 
23 here meaning a point in the domain of f(x). 
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values of x make cos(x - o:) equal to 1. There are many dif
ferent subspecies of discontinuities, which fact we will mostly 
ignore. Graphically, a discontinuity is a point at which a 
curve isn't smooth, i.e. where it jumps, or plummets, or 
there's maybe even a hole. Note also a bit of semantic finery: 
since the word 'discontinuity' can also refer, 2nd-Level
abstractly, to the general condition of something's being not
continuous, the term exceptional point is sometimes used to 
refer to a specific point at which there's a discontinuity. The 
nub here being that analysis tends to use 'discontinuity' and 
'exceptional point' interchangeably. 

(e) Last: Deceptively similar in English to 'uniform con
vergence' is absolute convergence, which mathwise is a totally 
different thing. A convergent infinite series S can have nega
tive terms (e.g., the Grandi Series from §3a). If any/all of S's 
negative terms are made positive (that is, if only the absolute 
values of the terms are allowed) and S still converges, then it's 
absolutely convergent; otherwise it's conditionally convergent. 

ENDE.G.11 

§Sb. Thrust of much of §5 so far: Floating around crucial 
but unmoored through the 1700s are ideas about functions, 
continuous functions, convergent functions, etc., with all 
their different respective defs. and properties undergoing 
constant change and refinement as analysis tackled various 
problems. As mentioned, and just as in the 1600s, a lot of 
these problems were scientific/physical. Here are some of the 
big ones of the eighteenth century: the behavior of flexible 
chains suspended from two points (a.k.a. 'catenary prob
lems'), motions of a point along descending curves ( === 'the 
brachistocrone'), elastic beams under tension, motions of a 
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pendulum in resistant media, forms taken by a sail under 
wind pressure ( = 'velaria'), orbits of planets w/r/t one 
another, caustic curves in optics, and fixed-compass move
ments on a sphere ( = 'rhumb lines'). For our purposes, most 
important of all is the infamous Vibrating String Problem, 
which in some ways harks back to Pythagoras's discoveries 
about the diatonic scale in §2a. The general V.S.P. is: Given 
the length, initial position, and tension of a transversely 
pulled string, calculate its movements when it's released to 
start vibrating. These movements will be curves, which is also 
to say functions. 

The reason the V.S.P. is often a mainstay of sophomore 
math is that it marks the first real application of partial differ
ential equations to a physical problem. Here is some history. 
In the 1740s, J. LR. d'Alembert proposes what is basically the 
ID Wave Equation as the correct representation of the V.S.P., 
yielding24 the general solution y = f(x + ct) + g(x - ct) 

where xis a point on a string of length 'IT, y is the transverse 
displacement of x at time t, c is a constant, 25 and f and g are 
functions determined by the initial conditions. Where things 
get controversial is in the allowable scope off and g. It turns 
out that d'Alembert's solution works only if the 'initial 
curve' of the string (that is, the way it's stretched at the start) 
is itself a periodic function. This puts a big restriction on the 
stretch, whereas of course for math and science you want 
maximally general solutions; and so major players like 
L. Euler, D. Bernoulli, J. L. LaGrange, P. S. LaPlace, and 

24 The following specifics are IYI. 
25 IYI This is the same c as in the Wave Equation-it's defined as 'the 

velocity of the propogation of the wave' or something close to that. 
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d' Alembert26 all start arguing heatedly with one another 
about whether and how to let the string's initial stretch be 
any sort of curve/function at all and still make the Wave 
Equation apply. In brief, the consensus that finally emerges is 
that regardless what the string's initial shape is, its vibrational 
curves are going to be periodic functions, specifically sine 

waves. From which, for complicated reasons, it follows that 
no matter how the string is stretched at the outset-meaning 
any continuous curve at all-this curve will be representable 
by a trigonometric series. 

Still in brief: A great many important discoveries about the 
nature and relations of functions, differential equations, and 
trigonometric series result from the opera of disagreement 
over the V.S.P. The one that's crucial to our Story is this idea 
that any continuous function27 can be represented as a trig 
series. First Euler, then d'Alembert, J. L. LaGrange, and the 
aforementionedly quixotic A. C. Clairaut all start coming up 
with methods for representing 'arbitrary functions' as 
trig series. The trouble is that these methods are always 
derived and applied w/r/t some particular physical problem 
or other, the solution of which problem is then claimed to 
be the method's justification. Nobody's able to prove the 

26 IYI For some reason, this is a period in which nearly all the impor

tant mathematicians are French or Swiss. In the next century it will be the 

Germans who dominate. No good explanation for this in the literature. 

Maybe math is like geopolitics or pro sports, with different dynasties 

always developing and then fading, etc. 
27 which (again, and as Dr. G. himself always used to iterate and stress 

because he said if we didn't get this we would never understand how the 

V.S.P. and Wave Equation were connected to trig series) is the same thing 

as a curve. 
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function ~ trig series thing as an abstract theorem. This is all 
going on through about the end of the 1700s. 

Now it's the early 1800s, during which time Cauchy and 
Noiway's N. H. Abel28 start doing significant work on series
convergence, which work ends up being even more signifi
cant in 1822. This is the year that the French Baron 
J.-B. J. Fourier29 (1768-1830), working on problems in the 
conduction of heat in metals, demonstrates in his Analytic 

Theory of Heat that representability by trig series could actu
ally be established for both continuous and discontinuous 
functions,30 even for 'freely drawn' curves. Fourier's demon
stration in ATH is too technical to get much into, but basi
cally what he does is exploit the relation between the sum of a 
series and the integral of a function: he realizes that series
representability for wholly arbitrary functions requires ignor
ing the F.T.C. and defining integration geometrically31 

instead of just as the inverse of differentiation. 
Since many classes teach Fourier Series without explaining 

where the math comes from, it's worth at least mentioning 

28 IYI 1802-29; joins E. Galois as the century's two great tragic prodi

gies; long, sad story; exerted (Abel did) an especially fertile posthumous 

influence on K. Weierstrass. 
29 IYI Curious addendum to FN 26's mystery: A lot of the preeminent 

French mathematicians of this era were also nobles-LaPlace a marquis, 

LaGrange a comte, Cauchy a baron, and so on-w/ at least some of these 

titles conferred by Napoleon I. Fourier's barony was, anyway; his own 

father was a tailor. 
30 Short version of story behind Fourier's discontinuous f(x)'s: Appar

ently, as a body takes on heat, its temperature gets distributed non

uniformly, meaning different spots have different temps at different times. 

It's the distribution of heat that Fourier's really interested in. 
31 i.e., as an area or sum of areas. 
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that Fourier starts out with a 2nd-order partial differential 
a2 a 

equation for the diffusion of heat in a ID body, ~ = -1,32 

ax at 
where y is the temperature of a point x at t, after which he 
uses a standard D.E.-technique called 'separation of vari
ables,' plus the initial condition that y = f(x), to derive that 
very special trig series now known as the Fourier Series, of 
which the relevant form is here presented as Exhibit Sb: 

Exhibit 5b 

I "' 
f(x) = 2ao + ~/a11 cos nx + b11 sin nx) for 0 s x s 2'Tr 

As it happens, this Fourier Series is actually very close to what 
D. Bernoulli had proposed as a solution to the V.S.P. back 
in the 1750s, except Fourier is able to calculate the series' 
coefficients33 for every value between 0 and 2'Ti'. In the 

2ir 

case of b11 , for example, b11 = ~J f(u) sin nudu-i.e., if you 
0 

integrate term by term, the coefficients b11 will be .ir times the 

area under the curve (f(u)sin nu) in the interval between u = 0 
and u = 2ir. With similar-type calculations for a0 and an-

Eyeglazing or no, the point is that, via the formulae for 
these Fourier coefficients, every conceivable single-valued 
function-algebraic, transcendental, continuous, and even 

32 This partial D.E. is commonly known as the Diffusion Equation, 
which you might notice resembles the Wave Equation. It is just this resem

blance that Fourier Series are able to account for, mathematically speaking. 
33 Since we pledged in E.G.! to try to steer clear of Fourier coefficients, 

the following five text-lines are classified m. 
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discontinuous34-becomes representable by a Fourier-type 
trig series on the interval [0, 271']. There are all sorts of won
derful strengths and advantages to this technique (which 
Fourier developed primarily to give a general solution to the 
Diffusion Equation (which verily he did give)). One example: 
Understanding integration geometrically, and conceiving of a 
function in terms of its values rather than as just an analytic 
expression,35 allows Fourier to consider functions' series
representability only over finite intervals, which is a major 
advance in flexibility for nineteenth-century analysis. 

At the same time, though, Fourier Series are almost a 
rerun of early calculus in terms of the practical-effi.cacy-v.
deductive-rigor thing. Especially as refined by S. D. Poisson 
in the 1820s, Fourier Series become the #1 way to solve par
tial differential equations-which are, as mentioned, the 
golden keys to mathematical physics, dynamics, astronomy, 
etc.-and as such they pretty much revolutionize math and 
science all over again. But they are also foundationless; there 
is nothing like a rigorous theory of Fourier Series. In the 
words of one math-historian, Fourier's techniques "raised 
more questions than he was interested in answering or capa
ble of solving." Which is both tactful and true: Fourier's ATH 

states but does not prove that a 'wholly arbitrary' function 

34 Discontinuous function is best thought of here as meaning that you 

can't express the function as a single 'y = f(x)' ·type equation-see one 

main-text 'I down. 
35 Analytic expression basically means the 'y = f(x)' thing. Another way 

of stating the text-clause is that Fourier interprets a function denotatively, 
i.e. as a set of specific correspondences between values, rather than conno
tatively as the name of the rule that generates the correspondences. Which, 

as we'll see in the next§, is a very modem way to think of functions. 
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can be represented by a series like Exhibit Sb; nor does it spell 
out what specific conditions a function has to satisfy to be so 
representable. Even more important, Fourier claims that his 
eponymous Series are always convergent in an interval regard
less of what the function is or whether it's even expressible as 
a single 'y = f(x)'; and while this has important implications 

for the theory of functions, there is no proof or even test for 
the I 00%-convergence claim. 

(M There was a similar problem involving Fourier Integrals, 
about which all we have to know is that they're special kinds of 
'closed-form' solutions to partial differential equations which, 
again, Fourier claims work for any arbitrary functions, and 
which do indeed seem tcr-work, that is-being especially good 
for physics problems. But neither Fourier nor anyone else in 
the early 1820s qm prove that Fourier Integrals work for all 
f(x)'s, in part because there's still deep confusion in math 
about how to define the integral ... but anyway, the reason 
we're even mentioning the F.I. problem is that A.-L. Cauchy's 
work on it leads him to most of the quote-unquote rigorizing 
of analysis that he gets credit for, some of which rigor involves 
defining the integral as 'the limit of a sum' but most ( = most of 
the rigor) concerns the convergence problems mentioned in 
(b) and its little Q.E.1. in the -Differential Equations part of 
E.G.ll, specifically as those problems pertain to Fourier Series. 36

) 

There's another way to state the general difficulty. Fourier 
(rather like Leibniz and Balzano) has an essentially geometric 
way of understanding things, and a penchant for geomet
rical demonstrations rather than formal proofs. In many 
respects, these are a holdover from classical calc and the 

36 There's really nothing to be done about the preceding sentence 

except apologize. 
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results-matter-more-than-proofs mentality of the 1700s. But 
such an approach is increasingly untenable now. Fourier's 
1820s is also the decade when the first non-Euclidean geome
tries (based primarily around the discovery that the Elements's 
Parallel Axiom37 was dispensable) are discovered, and the 
idea that geometry could be any kind of fixed, univocal foun
dation for anything becomes officially absurd. A related issue 
is that mathematicians from Newton to Euler to C. F. Gauss 
had gotten into terrible paradoxical trouble using series with
out regard for convergence v. divergence,38 and Fourier and 
Cauchy's emphases on convergence-in-intervals now help 
reveal just how sloppy analysis had been w/r/t series. The 
overall result is the start of a correction in analysis's stock
market bubble; or, as M. Kline has it, "[M]athematicians 
began to be concerned about the looseness in the concepts and 
proofs of the vast branches of analysis." It's in the 1820s that 
we start getting pronouncements like Cauchy's "It would be a 
serious error to think that one can find certainty only in geo
metrical demonstrations or in the testimony of the senses" and 
Abel's "There are so very few theorems in advanced analysis 
that have been demonstrated in a logically sound way. Every
where one finds this wretched method of concluding from the 
special to the general,"39 which latter became as famous a 
sound byte for nineteenth-century retrenchment as d' Alem
bert's "Just keep moving forward" had been for the 1700s' lais
sez faire. 

37 IYI q.v. §ld. 

38 M Recall e.g. Euler's -
1 

-1- canard in §3a, or for that matter the whole 
-x 

Grandi Series thing. 
39 Important to notice: Abel's final gerund phrase is just a roundabout 

way of saying 'induction'. 
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Overall point: Along with the fall of Euclid, it's Fourier 
Series' arbitrary-function- and convergence-issues which 
prompt the era's mathematicians to realize that atomic con
cepts like 'derivative,' 'integral,' 'limit,' 'function,' 'continuous,' 
and 'convergent' had to be rigorously defined, w/ 'rigorously' 
here meaning basing analysis on formal proofs and arith
metical reasoning instead of on geometry, intuition, or 
induction from specific problems. 

Except 'arithmetical' in tum meant the real-number system, 
which at this time was itself still an ungrounded mess. There 
were, for example, hideous problems with negative numbers-
Euler was convinced that negatives were actually > oo, i.e. that 
they ought to be way out to the right on the Number Line; 
and as late as the 1840s A. De Morgan held that negatives 
were just as 'imaginary' as vCl; and let's not even talk 
about the snafus over complex numbers. The worst trouble, 
though, was that the root concept of 'real number' was itself 
unclear because irrationals were still undefined. If you can't 
coherently define numbers like v'2 or \/3, you can't prove 
any of the basic arithmetic laws for them, e.g. that 
Vz X V3 = '\1'2X3.40 This is not good, rigorwise. There's a 
certain amount of valuable sidework in this period on tran
scendental v. algebraic irrationals,41 but for the most part 

40 IYI Nor can you demonstrate this equivalence by calculation, since of 

course 'v2' and 'V3' both represent infinite decimals. In the nomencla

ture of analysis, you can't prove that the sums of these two decimals' infi

nite series converge to that of v6. 
41 IYI Said work is by J. Liouville and C. Hermite (more Frenchmen). 

Re the whole algebraic-v.-transcendental-irrational thing, see or resum

mon §3a FN 15. There's also some more on Liouville's big proof later on 

in §7c. 
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the real-number system on which everybody's laboring to 
ground analysis is itself dangling in midair, logically speaking. 

§5c. SOFI'-NEWS INTERPOLATION, PLACED HERE ANTE 

REM BECAUSE TIDS IS THE LAST PLACE TO DO IT WITHOUT 

DISRUPTING THE JUGGERNAUT-LIKE MOMENTUM OP TIIE 

PRE-CANTOR MATHEMATICAL CONTEXT 

There are several extant photos of G. F. L. P. Cantor in books, 
at least one of which can hopefully be appropriated and 
reproduced here someplace. He is a completely average-look
ing bourgeois German from the era of starched collars and 
fire-hazard beards. (Note, in family photos, the waistcoat and 
pocketwatch w/ prominent fob, the wife's plaits and bustle, 
the sternly serene or abstracted expression of the standard 
Victorian male. In the U.S. he'd have had a hat.) 

In or about 1940, special National Socialist historians of 
mathematics 'discover' that G. F. L. P. Cantor had been a 
foundling, born and discovered on a German ship on its way 
to the port of St. Petersburg, parents unknown. Which is utter 
fiction. The Reich was apparently worried that Cantor might 
have been Jewish; by then he was regarded as one of Ger
many's greatest intellectuals ever. The foundling story still cir
culates sometimes-it fits some of our own templates as well 
as the Nazis'. Another big one is that Cantor derived many of 
his most famous proofs about oo while in an asylum, which is 
also hooey. Cantor's first hospitalization was in 1884, when he 
was 39; most of his important work had already been done 
by then. He wasn't hospitalized again until 1899. It was in 
the last 20 years of his life that he was in and out of places all 
the time. He died in the Halle Nervenklinic6 January 1918. 
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This photo is missing the plaits and fob, but you get the idea. 

The Cantor family home on Handelstrasse was at least 

briefly occupied during WWII. There's no evidence that the 
Nazis knew whose house it had been. Still, the major portions 

of Cantor's literary estate were evidently Jost or burned. Most of 
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Here is the pencil sketch referred to a couple offs down-it's 

not entirely clear to me why they put it here. 

what's left is at the Akademie der Wissenschaften in Gottingen 

and is available for perusal behind glass. Family letters, 
genealogies, etc. There are also still a few of Cantor's letter

books, which were what literate people then used to draft 

letters before copying them carefully out to send. Plus there 
were other mathematicians he wrote to who kept his letters. 

These are the primary sources. 
Here is a quotation from J. W. Dauben, the dean of U.S. Can

tor-scholars: "Too little information has been preserved to allow 

any detailed assessment of Cantor's personality, which leaves 

the historian to say either nothing on the subject, or to conjec
ture as best he can." Much of the published conjecture concerns 



170 DAVID FOSTER WALLACE 

Cantor's father, Mr. Georg W. Cantor, with the big modem 
issue being whether "Georg Waldemar had a thoroughly delete
rious and ruinous effect upon his son's psychological health"42 

or whether Georg W. was actually "a sensitive and gifted man, 
who loved his children deeply and wanted them to live happy, 
successful, and rewarding lives." Either way, it's for sure that 
there were exactly two businessmen who had a profound effect 
on G. F. L. P. Cantor's life, one being his father and the other 

Prof. Leopold Kronecker, who starts looming large in §6. 
Mr. and Mrs. Georg W. have six kids; Georg Jr. is the first. 

The whole extended family is artistic and high-functioning: 
several relatives are classical violinists or showing painters; a 
great-great-uncle had been director of the Vienna Conserva

tory and the teacher of the virtuoso Joseph Joachim; a great
uncle had been Tolstoy's law professor at Kazan University. G. 
F. L. P. Cantor's date of birth is 3 March 1845. A Pisces. Some
thing of a violin prodigy as a child. No one knows why he quit, 
but after a classical quartet in college there's no more mention 
of the violin. Also a good natural artist. A pretty extraordinary 
pencil sketch from childhood survives; it's famous because of a 

lefthanded and indisputably creepy "Proclamation" that Georg 
W. conferred on it, which proclamation itself survives because 
(also creepily) Georg Jr. kept it on his person all his life: 

Whereas Georg Ferd. Louis Phil. Cantor has not spent 
years in the study of drawing according to the ancient 

42 Another exemplary quotation along these lines is E. T. Bell's "Had 

Cantor been brought up ;1s an independent human being he would never 
have acquired the timid deference to men of established reputation which 

made his life wretched." 
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models; and whereas this is his first work and in this dif
ficult art a perfected technique is only achieved after 
great diligence; and whereas, furthermore, until now he 
has greatly neglected this beautiful art; the thanks of the 
nation-I mean of the family-is unanimously voted to 
him for this first effort, which already shows great 
promise. 
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All sources agree that Georg W. personally supervised his 
children's religious development in something of a hardass 
way. Notice how easy it is to view this through today's lens as 
oppressive or neurogenic, when in fact it might have been 
just SOP for the time and place. It's hard to tell. Likewise the 
fact that Cantor Sr. "took a special interest in [Georg's] edu
cation and was careful to direct his personal and his intellec
tual development." 

The family moves from St. Petersburg to western Germany 
when Georg is 11. The reason, according to historians, is 
Georg W.'s "poor health," which in the 1850s was code for 
TB; the relocation is analogous to moving from Chicago to 
Scottsdale. They live mainly in Frankfurt, on the Rhine. 
Georg boards at prep schools in Darmstadt and Wiesbaden. 
As seems to happen with most great mathematicians, Can
tor's analytical genius gets discovered in his early teens; ecsta
tic letters from his math teachers are still there to be seen at 
the Akadamie. The story's standard version is that Georg W. 
wants Georg Jr.'s gifts put to practical uses and tries to force 
the boy into engineering, that Georg burns to do pure math 
and has to hector and beg, etc., and that when Georg W. 
finally accedes it's in a way that puts great pressure on his 
fragile son to Achieve and Excel. Again, it's not clear whether 
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this was quite true or/and how unique a father-son gestalt 
it was.43 

Cantor does his undergrad work in Zurich and then gets 
the German equivalent of an M.S. and Ph.D. at U. Berlin, 
which at that time is sort of the MIT of Europe. His teachers at 
Berlin include E. E. Kummer, L. Kronecker, and K. Weierstrass. 
It's Kronecker who is Cantor's dissertation advisor and his 
real mentor and champion in the department. The irony of 
this will also start emerging in §6. 

§Sd. Now we're back in the 1820s with Fourier and trig 
series and all the challenges and opportunities attendant 
thereon. If §Sb's discussion of Fourier Series and E.G.u's 
-Differential Equations's interpolated stuff on the connec
tions between continuity and convergence were halfway 
lucid, it will not surprise you to learn that in Analytic Theory 
of Heat Fourier supplies the first modem definition of con
vergence, as well as introduces the vital idea of convergence 

43 M Another exchange of letters is often cited, w/ all weirdnesses and 

emphases sic-

Georg W - Georg Jr. : 

... I close with these words: Your father, or rather your parents and all 

other members of the family both in Germany and in Russia and in 

Denmark have their eyes on you as the eldest, and expect you to be 

nothing less than a Theodor Schaeffer [teacher of G. C. Jr.] and, God 

willing, later perhaps a shining star on the horizon of science. 

Georg Jr. - Georg W.: 

... Now I am happy when I see that it will no longer distress you if I fol

low my own feelings in this decision. I hope that you will be proud of me 

one day, dear Father, for my soul, my entire being lives in my calling; 

whatever one wants and is able to do, whatever it is toward which an 

unknown, secret voice [?!] calls him, tluit he will carry through to success! 
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in an interval. But that (again) Fourier fails to give a rigorous 
proof, or even to spell out convergence-criteria that would 
make such a proof possible. So the thing is now we're talking 
about convergence. 

It's Bolzano44 and more famously Cauchy who did the first 
salient work on conditions/tests for convergence. As has been 
mentioned in a couple places already, a lot of Cauchy's 
results were valuable, but he also made weird errors that 
caused further problems. Though a lot of his work was on 
series of functions, for instance, Cauchy chose to define 
'limit' in terms of variables instead of functions. Or an even 
better example here is the way that he tried to establish a total 
identity between convergence and continuity in terms of 
sequences/series of functions. Recall45 that Cauchy's claim is 
that if a sequence of continuous functions converges in inter
val I to a function C, then C itself is continuous on I-which 
it turns out is not true unless the convergent sequence is uni
formly convergent. What happens in this case is that N. Abel, 
in proving Cauchy's error46 and refining the theorem, develops 
what's now known as Abel's Uniform-Convergence Test,47 just 

44 IYI Suffice to say that Bolzano's definitions and results on continuity 
in §3c can, with only minor adjustments, be extended to the concept of 

series-convergence. 
45 M from E.G.II's -D.E.(b)'s Q.E.I. 
46 IYI This is 1826. Abel's specific counterexample is the series 

. sin 2x sin 3x h' h h b th F . Se . sm x - -
2
- + -

3
- - · · ·, w 1c appens to e e ouner nes expan-

sion of y = ~ in the interval - 'lT < x < 'lT, and verily is convergent, but 

whose sum is discontinuous for x = ir(2n + I) where n is an integer. 
47 M which A.U.C.T. is stil1 used today, and you might have had it in 

school; and if you didn't, here it is so you can see what this sort of thing 
really looks like: Assume c.(x) is a sequence of functions in some interval 



174 DAVID FosTER WALLACE 

as all sorts of other criteria and conditions for various kinds 
of convergence of various kinds of trig and polynomial series 
are also getting developed as various nineteenth-century 
mathematicians struggle to dean up other mathematicians' 
mistakes and/or to solve problems in better ways. 

One of the era's most important cleanup mathematicians 
is G. P. L. Dirichlet (1805-1859), a friend of Fourier's whose 
1829 "Sur la convergence des series trigonometriques" did much 
to clarify and rigorize what came to be known as the General 
Convergence Problem of Fourier Series. There are several 
important advances in this paper, like that Dirichlet is the 
first to discover and distinguish absolute v. conditional con
vergence; plus he disproves Cauchy's contention that a 
monotonic decreasing series is the same as a convergent 
series. Most important, though, is that in "Sur la convergence" 
Dirichlet establishes and proves the first set of sufficient con
ditions48 for a Fourier Series converging to its original f(x). 

This last result is pertinent and deserves some detail. 
Dirichlet uses a periodic f(x) on the interval [ -1T, 1T] and 

[a, b]. If (1) the sequence can be rewritten as c0 (x) = a.f.(x), and if (2) the 

series };a" is uniformly convergent, and if (3) f.(x) is a monotonic decreas

ing sequence such that f. + 1(x) s f,,(x) for all n, and if ( 4) f;.(x) is bounded 

in [a, b], then (5) for all x in !a, b], the whole series LC" is uniformly con

vergent. (If (2)'s requirement that la. be uniformly convergent looks 

odd/circular, be advised that it's a common trick in pure math to take a 

property of something simple or easily proved (La" being far and away the 

simpler part of (l)'s decomposition of c.(x)) and to use it to prove that 

the same property holds for a more complicated entity. In fact, this very 
trick is at the heart of mathematical induction, a 100% reputable proof· 

technique that enters play in §7.) 
48 m Please see or recall §5a's FN 15. 
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basically proves that if ( 1) its Fourier Series is sectionally con
tinuous and thus has only a finite number of discontinuities49 

in the interval, and if (2) the Series is sectionally monotonic, 
then (3) the Series will always converge to the f(x), even 
if that function requires more than one sort of 'y = f(x)' 

expression to represent it in the interval. 
There's one additional requirement, which Dirichlet also 

proves. The function f (x) has to be integrable-that is, 
1T 

J f(x)dx has to be finite-basically because the relevant 
-1T 

Series' Fourier coefficients are calculated as integrals and 
these need to be 'well-defined' (long story). As an example of 
a function that isn't integrable and so can't be represented by 
a well-defined Fourier Series, Dirichlet cooks up a pathologi
cal f(x) whose values equal the constant c when xis rational 
but equal the constant d (w! d ;o! c) when xis irrational, which 
function is indeed not integrable. It's largely this pathological 
f(x) that leads Dirichlet, eight years later,50 to give the defini
tion of 'function' that's still used in modern math: "y is a 
function of x when to each value of x in a given interval there 
corresponds a unique value of y." The big thing is that the 
correspondence can be completely arbitrary; it doesn't matter 
whether y' s dependence on x accords with any particular 

49 IYI again, a.k.a. exceptional points. 
so IYI = 1837, in a paper whose rather lovely-sounding title is" Ober die 

Darstellung ganz willkurlicher Functionen durch Sinus- und Cosinusreihen," 
which translates roughly to "On the Representation of Wholly Arbitrary 

Functions by Sine and Cosine Series." (Impressively, mathematicians of 

this era seem able to write in both French and German, depending on what 
journal they're submitting a paper to.) 
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rule, or even whether it can be expressed mathematically. 51 

Strange as this sounds, it's actually 100% rigorous for math 
purposes, since arbitrariness yields maximum generality, 
a.k.a. abstraction. (Dirichlet's definition also happens to be 
very close to the Bolzano-Cantorian idea of one-to-one cor
respondence between two sets of real numbers, except of 
course neither 'set' nor 'real number' has been defined in 
math yet.) 

In his 1837 article, Dirichlet is also able to show that you 
could relax the monotonic requirement (2) and even allow a 
greater number of discontinuities (1) in his 1829 proof and 
still guarantee a Fourier Series' convergence to its integrable 
f(x) . . . so long as the number of discontinuities in 
( 1) remains finite. This is still not the same as proving 
Fourier Series-convergence for any arbitrary f(x), though
especially when you're trying to Fourierize the hairy and 
often wildly discontinuous functions of pure analysis and 
number theory.52 W/r/t these complex functions, the ques
tion Dirichlet is never able to answer is whether criterion 
( 1) of his proof could be relaxed to allow infinitely53 many 
discontinuities in the interval and still constitute a sufficient 
condition for convergence. 

Now G. F. B. Riemann (1826-1866, that colossus of pure 
math who revolutionized everything from functions to number 

51 meaning that now in analysis a function is really neither a thing nor a 

procedure but rather just a set of correspondences between a domain and a 

range. 
52 We should mention that what Fourier, Cauchy, and Dirichlet usually 

worked with were functions in mathematical physics, which tend to be 

comparatively simple and well-behaved. 
53 IYI Right here is the first bit of real foreshadowing w/r/t how hard

core analysis spawns transfinite math. 
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theory to geometry,54 and is Cantor's only serious competi
tion for Mathematician of the Century} enters the picture, 
albeit briefly and in a mostly transitional role. Twenty years 

54 One hesitates to get into this, but in fact the Riemannian version of 

non-Euclidean geometry-sometimes a.k.a. 'general differential geome

try,' and dating from 1854 (a very big year for Riemann)---constitutes a 

whole other vector of explanation for why rigorous theories of real 

numbers and oo become necessary in the 1800s. It's slightly tangential, and 

brutally abstract, and will be mostly pretermitted except for right here. 

Boiled way down, Riemannian geometry involves (a) Gauss's complex 

plane (i.e., a Cartesian grid that has real numbers as one axis and complex 

numbers as the other axis) and (b) something called a Riemann Sphere, 

which can be thought of as basically a 2D Euclidean plane curved into a 

ball and set atop the complex plane. This footnote isn't technically M, but 

feel free to stop anytime. What connects Riemannian geometry with the 

aforementioned projective geometry of Desargues is that every point on 

the Riemann Sphere has a 'shadow' on the complex plane; and the 

trigonometric relations created by these shadows turn out to be fecund as 

hell, <J)-wise. For example, a line on the complex plane is the shadow of 

something caUed a Great Circle on the Riemann Sphere, meaning a circle 

whose circumference goes through the R.S.'s north pole, which pole is 

defined, literally, as 'a point at Cl)'. In fact the entire Riemann Sphere is 

definable as 'the complex plane with a point at a:i,' which entity is also 

known as the Extended Complex Plane. 0 is the Riemann Sphere's south 

pole, and oo and 0 are by differential-geometric definition inversely related 

(because taking the inverse of a number on the complex plane is equivalent 

to flipping the Riemann Sphere over-long story). So that in Riemannian 

geometry, 'O = Js.• and 'oo =~·are not only legal; they're theorems. 

We'll stop the specific discussion here and hope it makes some kind of 

general sense. Big overall thing to know: It is not an accident that the symbol 

for the Extended Complex Plane is 'C.,' whereas G. Cantor's most famous 

symbol for the set of all real numbers (a.k.a. the Continuum, which as we'll see 

is basically the 2nd mathematical order of cJ)) is 'c'. There are all kinds of fasci
nating connections between Riemannian geometry and Cantorian set theory, 

most of which are unfortunately beyond what we're set up to talk about 



178 DAVID FOSTER WALLACE 

older than Cantor, Riemann is a student of Dirichlet's at U. 
Berlin, as well as a friend of R. Dedekind. 55 In a seminal 1854 
paper,56 Riemann attacks the General Convergence Problem 
of Fourier Series in a whole new way. Focusing on the pro
viso that an f(x) has to be integrable in order to be repre
sentable as a Fourier Series, he derives general conditions that 
any function must satisfy to have an integral, conditions that 
end up being important both for analysis's theory of integra
tion and for series-convergence. In essence, 'general condi
tions that any function must satisfy' means necessary 
conditions, whereas you'll recall that Dirichlet's 1829 proof 
had involved sufficient conditions. It's by inverting his 
teacher's approach and concentrating on necessary condi
tions for convergence that Riemann solves Dirichlet's big 
problem: he constructs a function that has infinitely many 
discontinuities in every interval but is nevertheless integrable 
and 100% convergent at every point.57 A consequence of this 

55 IYI By this time, all the major players in the genesis of transfinite math are 

alive, and most are mathematically active. In 1854, Riemann is 28, Dedekind 

23; Weierstrass is 39 and L Kronecker 31. The not-yet-mentioned E. H. Heine 

is 33. Cantor is 9 and playing the violin under the beady eye of Georg W. 
56 M This paper's long title starts with "Ober die Darstellbarkeit . .. " 

( = "On the Representability ... "). It was actually more of a second Ph.D. 

dissertation than a pro monograph (long story), and its mss. got handed 

around among mathematicians until Dedekind finally arranged to have it 

published after Riemann died 
57 m For the stouthearted and/or hale of background, or if you 

maybe just want to revel in some more of analysis's symbology: Riemann 

derives this f(x) by taking a standard trig series and integrating each 
ao "" a,cos rx + b,sin rx 

tenn twice, yieldingf(x)=C + C'x + 2 X
2 

- r~I r2 , where-

upon he's able to prove that this trig series is convergent so long 
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result is something known as Riemann's Localization Theo

rem, which states that the convergence of a trig series at a 
point depends all and only on the behavior of its relevant f(x) 

in some arbitrarily small neighborhood58 of that point. And 
the 'arbitrarily small neighborhood' thing is what finally vali
dates Fourier and Dirichlet's claims about series representing 

wholly arbitrary functions: via the Localization Theorem, even 
highly discontinuous or pathological functions can be repre
sented by trig series-and, if integrable, by Fourier Series. 

As is SOP, though, at the same time Riemann's work is 

answering earlier questions it's also raising new ones; and it's 
ultimately these questions that make his 1854 paper so impor
tant. Example: An implication of the Localization Theorem is 
that two different integrable functions can be represented by 
the same trigonometric series even if they differ at a large but 

finite number of points-is there any way to get the same 
result for two functions that differ at an infinity of points? 
Other important ones: Exactly what properties of trig series 
allow them to be convergent even with a co of exceptional 
points in each interval? and How exactly are the concepts of 
f(x)-continuity, intervals, and neighborhoods connected to 
the theory of trig series? and Is every trig series a Fourier Series 
(i.e., does every trig series converge to an integrable function)? 
and If more than one function can be represented by the same 

as 
Lim f(x+ a +j3) - f(x+ a - j3) - f(x-a + 13) + f(x-a. - j3) 

a--><J,jl--><J 
4af3 

behaves in certain special ways (which ways, again, we don't have the con

ceptual ordnance to talk about, but they're not dubious or strange, just 

really technical). 
58 IYI as defined in E.G.l. 



180 DAVID FOSTER WALLACE 

trig series, is the reverse true, or does each unique f(x) have 
only one unique trig-series representation?59 

After Reimann's paper, the next big order of business for 
pure mathematicians is coming up with the techniques 
needed to solve the problems it had posed, w/ the special 
challenge being to ground those techniques in rigorous foun
dations instead of the inductive or faith-based intuition that 
had marked so much past analysis. N.B. that the emphasis 
on foundations/rigor is partly because Riemann's wholly 
abstract functions have finally moved Fourier Series out of 
the applied-math realm of physics and into higher math per 
se. But plus of course we're now in the 1850s, and the need 
for rigor (as discussed re the 1820s in §Sb) is even more gen
erally urgent. In real time it's taken several decades, but the 
boom of justification-by-results is now giving way entirely to 
the more contractionist, prove-as-you-go economy of what 
math-historians all call the Arithmetization of Analysis. 

§Se. The key figure at this point is Karl Weierstrass 
( 1815-1897), who can now dramatically be revealed as one of 
the heroes of B. Russell's thing about Zeno's Paradoxes in 
§2a. Here's the rest of that quotation60

: 

From [Zeno] to our own day, the finest intellects of each 
generation in turn attacked the problems, but achieved, 
broadly speaking, nothing. In our own time, however, 
three men-Weierstrass, Dedekind, and Cantor-have 

59 M More foreshadowing: The first and last of these questions will be 

what G. F. L. P. Cantor's own early work tries to answer, and it's this work 

that leads him into oo per se. 
60 m The preceeding parts appear on pp. 48 and 52. 
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not merely advanced the problems, but have completely 
solved them. The solutions, for those acquainted with 
mathematics, are so clear as to leave no longer the slightest 
doubt or difficulty .... Of the three problems, that of the 
infinitesimal was solved by Weierstrass; the solution of the 
other two was begun by Dedekind and definitively accom
plished by Cantor. 
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Weierstrass is not directly in the Fourier-Cauchy-Dirichlet
Riemann academic line-up until his 40s, he's obscure in the 
same way Bolzano was. His early career is spent teaching high 
school in West Prussia (not exactly a hub),61 and he's said to 
have been literally too poor to afford the postage for submit
ting work to journals. He finally starts publishing in the late 
1850s, and sets math on its collective ear, and gets hired by 
prestigious U. Berlin as a prof-it's all a long and kind of 
romantic story. (IYI Weierstrass is also conspicuous among 
mathematicians for being physically large, a gifted athlete, an 
inveterate partier and blowoff in college, indifferent to music 
(most mathematicians are fiends for music), and a cheery, 
non-neurotic, gregarious, wholly good and much-loved fel
low. He's also widely regarded as the greatest math teacher of 
the century, even though he never published his lectures or 
even let his students take notes.62

) 

61 M N.B., however, that German technical Hochschulen were 

extremely hardass institutions by today's standards, and calc and basic 

analysis were required parts of the curriculum. (Teacher salaries legendar
ily low, though.) 

61 The grad student who did take covert notes and is the main reason 

why Weierstrass's later function-theory got known is one G. Mittag-Leffler 

(1846-1927), who later started the famous journal Acta Mathematica and 
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The specific reason we're now talking about Weierstrass is 
that it is mostly his discoveries that enable math to attack the 
questions that Dirichlet and Riemann's work on the G.C.P.F.S. 
had raised. So much so that q.v., from math-historian I. 
Grattan-Guinness, "[T]he history of mathematical analysis 
during the last third of the 19th century is in notable measure 
the story of mathematicians applying Weierstrassian tech
niques to Riemannian problems." The real inspiration behind 
these techniques is not Fourier or Riemann but the tangen
tially aforementioned N. H. Abel (Weierstrass being a huge 
Abel fan), specifically an innovation called elliptic functions 
that Abel had derived c. 1825 from elliptic integrals-which 
latter, to make a long story short, emerge in calculating the 
arc-length of an ellipse and are a big deal in both pure and 
applied math.63 Weierstrass's first significant work (back in 
W. Prussia, by candlelight, in between grading quizzes) 
involves the power-series expansions of elliptic functions, 
which leads him into problems regarding the convergence of 

published G. Cantor's work on IX> when most other math journals still 

thought it was insane. Historically, Mittag-Leffler is regarded as Cantor's 

2nd most important penpal, after R. Dedekind. 
63 m For the most part, elliptic integrals are generalizations of inverse 

trig functions; they tend to show up in all sorts of physics problems, from 

electromagnetism to gravity. If you see them in a math class, it's usually in 

conjunction with A. M. Legendre (another of the early 1800s' Frenchmen), 

who was to elliptic integrals what Fourier was to trig series, and developed 

'Legendre's standard elliptic integrals of the 1st, 2nd, and 3rd kinds.' 

(IYI2 If, incidentally, you know that G. Riemann also did a lot with E.I.s 

and certain associated integrals in the Calculus of Variations, be advised 

that we're not getting into any of this.) 
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power series, 64 and thence to convergence, continuity, and 
functions in general. 

The reason Russell lauds him w/r/t the problem of infini
tesimals is the same reason Weierstrass gets top billing in the 
Arithmetization of Analysis. He is the first to give a wholly 
rigorous and metaphysically untainted theory of limits. 
Because it's important, and underlies the way most of us are 
now taught calc in school, let's at least quickly observe that 
Weierstrass's definition of limits replaces Abel/Bolzano/ 
Cauchy's natural-language terms like 'approaches a limit' 
and 'becomes less than any given quantity' with the little 
epsilon and delta and the 'I I' brackets of absolute value. A 
great fringe benefit of Weierstrass's theory is that it character
izes limits and continuity in such a way that either can be 
defined in terms of the other. See for example his definition 
of continuous function, which is still the industry standard 150 
years later65

: f(x) is continuous at some point xn if and only if, 
for any positive number E, there exists a positive & such that 
for any xin the interval Ix - xnl < &, lf(x) - f(xn)I < E.· 

•QUICK EMBEDDED SEMl-M INTERPOLATION 

Please skip the following three ts if and only if Weierstrass's 
definition already makes total sense to you. 

Since the prenominate def. is not IYI, we need to counte
nance the possibility that it may be < 100% clear why it's such 
a big deal. We could talk about how the definition is specifi
cally a rigorization of Cauchy's Cours d'analyse's "f(x) will be 

64 M Pretty sure E.G.! mentioned that Fourier Series are a kind of 

power series. 
65 For reasons that will become apparent, this high-tech def. is not m. 
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a continuous function of the variable if the numerical value 
of the difference f(x + ex) - f(x) decreases indefinitely with 
that of cx"-Weierstrass's coup is that he comes up with a 
rigorous, wholly arithmetical substitute for the murky 
"decreases indefinitely". But none of that is going to mean 
inuch if we can't see how Weierstrass's new definition actu
ally works, which in turn requires parsing the dense technical 
syntax in which it's laid out for mathematicians. Its hyper
abstract language can make the def. seem either totally trivial 
(e.g., since E and & are not defined as having any direct rela
tion to each other, isn't it obvious that you can pick a & for 
any E you want?) or totally mystifying (e.g., how can you 
determine what Ix - xnl equals if you don't know what xis?). 
Or at least such were our class' initial complaints to Dr. Goris, 
who handled them in his usual unforgettable way, more or 
less as follows66

: 

First off, recall from E.G.I how continuous function means 
that tiny little changes in the function's independent variable 
(x) yield only tiny little changes in the dependent variable 
(f(x), alias y). The 'tiny little changes' thing is what's really 
important here: it clues you in that differences like !x - xnl in 
the def. are going to be conceived as really small. Respecting 
xn and x: x" is a particular point, namely the point for which 
we're going to evaluate the continuity of the function; and 
x is, technically, any point at all in the function's interval, 
although given what continuous function means it's better to 

66 Command Admission: What follows is going to be a lot less formal/ 
rigorous than Dr. G.'s own gloss of the def. We're aiming for an explana
tion that will make maximum sense in terms of the vocab and concepts 
developed in the booklet thus far. 
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think of x as any point that's 'sufficiently close' to x"' This is 
because the whole point of Weierstrass's def. is to let us verify 
that a tiny little difference between x and Xn will yield only a 
tiny little _difference between f(x) and f(xn). The engine of 
this verification is the positive numbers E and &, and the easy 
way to understand these two numbers and their relation is in 
terms of a game. Here's the game: you pick any positive E you 
want, no matter how small, and I try to find a positive 8 that 
will make the conjunction (jx - x,,I < &) & (j(f(x) - f(x,,)I < E) 
true67

; and if I can find such a 8 for any E you pick, then the 
f(x) is continuous at xn, and if I can't it isn't. 

As did Dr. G., let's do an example for a function that isn't 
continuous, so that we can see how not just any old 8 will do 
for a given E. The function's defined thus: f(x) = 1 if x ;oil 0, 
and f(x) = 0 if x = 0. We're going to evaluate this f(x)'s con
tinuity at the point xn where Xn = 0. The game is that you can 
pick any positive value you want for E, and let's say you 

pick E = !· So now I have to find a positive 8 such that 

(Ix - xnl < 8) & ( lf(x) - f(xn) I<!) will be true. But now 

please either flip or think back to §le FN 14's rule that a logi
cal conjunction is true only when both its pre-'&' term and 

67 100% technically speaking, Weierstrass's def.'s "for any ... , there 

exists ... such that" is really layjng out an entailment-relation in first-order 
predicate calculus, which is a more involved kind oflogic that uses quanti

fiers like 'Ir/' and '3'. Except for one or two toss-offs in §7, though, this 

booklet does not get into predicate calculus, so here we're symbolizing the 

relation between the definition's E and 8 as a logical conjunction. For our 

illustrative-proof purposes this will work just as well; the relevant truth

values end up the same. 
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its post-'&' term are true. And now look at our example's 

post-ampersand term, 'lf(x) - f(x") I< i'· By the definition 

of our function, we know that f(x") = O; and by the same 

definition, we know that any other x besides x" yields an f(x) 
of 1 (because x" is the only point at which x = 0). So where 
x" = 0, lf(x) - f(xn)I is always going to equal 1, which is 

obviously greater than i· No matter what B I might pick for 

Ix - x"I to be less than, lf(x) - f(xn)I is never going to be < 1 
when Xn = 0. Since the second term will always be false, the 

conjunction (Ix - xnl < B) & (If (x) - f(x") I< i) is going to 

be false regardless what B is. The upshot of which is that there 

is not a positive S for E = i here, so the definition's criterion, 

"for any positive number E, there exists a positive B such 
that ... , " is not satisfied. So the function isn't continuous at 
x" (which we knew to begin with, but the whole object was to 
apply Weierstrass's def. to a clear case). Game over. 

END Q. £. S.- m I. RETURN TO MAIN §Se DISCUSSION, IN PROGRESS 

One bit of possible puzzlement not covered in the INTERPOLA

TION: What Weierstrass has defined supra is just continuity
at-a-point-but since you can choose any point in a given 
interval to be x", an f(x) can obviously be defined as continu
ous in an interval if it's continuous at each and every Xn in the 
interval. So a general definition of continuity for functions 
drops right out of the initial def. And-this is what rocked 

the math world-so does the definition of limit: if you take 
Weierstrass's original def., then f(x) can be defined as having 
a limit Lat xn if you can replace f(x,,) with Land still find a S 

for any E such that Clx - x" I< B) & (lf(x) - LI < E) is true. 
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There's a reason this all looks so hideously abstract: it is 
hideously abstract. Yet this very abstractness is what makes 
Weierstrass's the cleanest, clearest theory of continuity/limits 
anyone had ever come up with.68 There's no natural-language 
fuzz; the def. uses nothing but real numbers and primitive 
operators like'-' and«'. Because it's so clean and abstract 
and arithmetical, the theory also enables Weierstrass to 
define convergence v. uniform convergence v. absolute con
vergence rigorously, to provide bona fide tests for same, 69 and 
to prove a number of things about continuity and trig-series
convergence that nobody' d been able to nail down. Pertinent 
examples here include (1) his proof that a series of continu
ous functions70 can converge to a discontinuous function, 
and (2) his aforementioned disproof of the theory that conti
nuity = differentiability, which disproof he demonstrates by 
deriving a function that is 100% continuous but has a deriva
tive at no point. If you're curious, this is the f(x) given by 
"' 
~ b' cos (a''TTx) where a is odd, 0 < b < 1, and 2ab > 2 + 
r=O 

31T-which incidentally if you graph this f(x) you get a curve 
that's got no tangent at all. You'll remember from §3c that 
B. P. Balzano had already come up with a similar function 
(which there's no evidence Weierstrass knew about), but 
there's a crucial difference. Balzano had merely proffered his 
example, whereas thanks to his purely formal definitions 

68 M Factoid: Such is the significance of Weierstrass's technique here that 

a great many subsequent proofs in analysis and number-theory use the "For 

any E, there exists a ... "device, for which the sexy term is epsilon tic proof. 
69 m His test for uniform convergence, known as Weierstrass's M-Test, 

still gets taught in analysis classes. 
70 e.g., a Fourier Series. 
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Weierstrass has the ammo to really prove that his own f(x) 

is both continuous and not differentiable. Another major 
advance: In Weierstrassian analysis, the concrete example is 
always coincident to the abstract general proof. 

As also mentioned in §3c, Bolzano and Weierstrass get 
joint credit for a big theorem about the limits of a continuous 
function,71 a theorem that's apposite here in part because it 
conceives of an infinite series/sequence of real numbers as an 
infinite set of Real Line points (and the first kinds of infinite 
sets that will interest G. Cantor are these point sets). You'll prob
ably want to recall the entries for -Interval and -Limits v. 
Bounds from E.G.I here. Formally speaking, the Bolzano
Weierstrass Theorem holds that every bounded infinite set of 
points contains at least one limit point, which is a point x,, 
whereby every interval around x,, contains a oo of members of 
the set.72 It may not immediately look it, but the B.W.T. is a 
true ball of fire. For instance, it turns out to yield a potent, 
infinitesimal-free antidote to §4b's no-next-instant paradox 
(which cruncher is itself consequent to the mindbending 
density of the Real Line's oo of points). 

71 IYI Historical factoid: Weierstrass's contribution to this theorem 

is really part of his unsuccessful attempt to define irrational numbers

q.v. §6a below. 
72 In essence what this does is recast the concept of convergence-to-a

limit in terms of point sets and R.L.-intervals. Example from S. Lavine: "I 

is a limit point of the set {0, k• ~, ~· ... ] . Intuitively one sees that the 

members of the set crowd against l." Granted, this isn't a totally rigorous 

def. of limit point, but it's certainly the upshot. Note here also that the limit 

point of an infinite sequence is a point such that every interval around it 

has an infinite number of terms of the sequence-meaning it works pretty 
much the same way, which will become relevant in §7a. 
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If you're up for this, here's how it works. The B.W.T. actu
ally comprises two theorems, one of which is Bolzano's from 
c. 1830 and states that, given a closed interval [a, b], a contin
uous f(x) in [a, b] that is positive for some value of x and 
negative for some other value of x must equal 0 for some 
value of x. 73 Geometrically, we can make sense of this by see
ing that a continuous curve that goes from someplace above 
the x-axis to someplace below the x-axis has to actually hit 
the x-axis at some point. Rigorwise, Bolzano's problem was 
that proving this theorem required him to prove that every 
bounded set of values/points must have a least upper 
bound,74 which latter proof foundered on the absence of 
coherent theories of limits and real numbers. So once again 
Balzano could really only propose his theorem and demon
strate geometrically that it was true; he couldn't formally 
prove it. Twenty years later, though, K. Weierstrass uses his 
rigorous theory of limits to prove Bolzano's 'Least Upper 
Bound Lemma' as part of his own Extreme Values Theorem, 
which is the other big part of the B. W. T. It's the Extreme Val
ues Theorem ( = if an f(x) is continuous in [a, b], then there 

73 IYI A direct consequence of Bolzano's theorem is something usually 

called the Intermediate Values Theorem, which is a staple of function

theory and says in essence that if an f(x) is continuous in [a, b) such that 

[(a) = A and f(b) = B, then f(x) takes all possible values between A and B. 
Ifwe define the continuous function as f(x) = 2x, [a, b] as (0, 1] and [A, BJ 

as [O, 2], then you can see that a prime instance of the I.V.T. is Bolzano's 

§3c proof about the one-to-one correspondence between (0, 1] and [O, 2]. 

This in turn might make it clearer why Bolzano's theorem requires a the

ory of real numbers, since 'all possible values between A and B' is not 

going to be a quantity we can verify by counting. 
74 IYI also in E.G.t's thing on -Limitsv. Bounds. 
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must be at least one point in [a, b] where the f(x) has its 
absolute maximum value Mand another point in [a, b] where 
f(x) has its absolute minimum value m), together with Weier
strass's high-powered definition of continuity, that provides a 
mathematical way out of the no-next-instant crevasse. To wit: 
Since time is clearly a continuously flowing function,75 we can 
assume a finite interval [ti> ti] > 0 between any two instants t1 

and tz, and now, thanks to the E.V.T., prove that there is a 
point in [t1, tzJ where the time-function has its absolute mini
mum value m, and therefore that this tm will be, mathemati
cally speaking, the very next instant after t1• 

From this result, you can probably see how the Extreme 
Values Theorem could be deployed against Zeno's Dichot-

omy itself (since in is a prototypical continuous function). 

In strict Weierstrassian analysis, though, the E.V.T. isn't even 
necessary, since the arithmetical theory of limits allows 
us to explain-meaningfully-why the convergent series 

_l + _l + _l + · · · + _!_ has 1 as its sum. 21 22 23 2n 

§Se(l). INTERPOLATION ON WEIERSTRASSIAN 

ANALYSIS AND ZENO 

You'll remember that we've already tried invoking 1 ~ r and 
various other formulaic solutions to the Dichotomy, only to 
find that they do not "state clearly the difficulties involved," 
much less explain how you can ever cross the street. These 
prior tries can all now be more or less ignored-though it 
wouldn't hurt to recall or review §2c FN 35's thing about 

75 m Indeed, so far as the real world goes, it's the paradigm of such a 
function. 
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how decimals are representations of convergent series. Plus 
of course the last few pages of §Se just above. So then here's a 
Weierstrassian analysis-type response to the Dichotomy.76 

What the Dichotomy's really talking about is a certain 
rational number s ( = the width of the street, the length of the 
arc from lap to nose), which number Zeno is inviting us to 
approximate by a convergent power series of other rational 
numbers sn, where n itself stands for the infinite sequence 1, 
2, 3, .... That may look opaque in the abstract, but lots of 
rational numbers can be approximated the same way. The 

rational s ~, for instance, can be approximated by the following 

convergent sn:-...; + ~ + ~+···+~.The Dichotomy's 
10 10 10 10 

only slightly trickier than the ~ thing-and some of this trick

iness can be mitigated by talking about §2b's more abstract, 
'revised' Dichotomy, where there's no time or motion but 
simply some quantity s that's halved, half that half halved, 
half that half-half halved, etc., until the smallest portions start 

equaling in where n is arbitrarily large.77 Adding up the portions 

derived this way gives us the Dichotomy's Sn as the following 

76 What follows is, again, very informal, and customized to work w/r/t 

the math and logic concepts we've set up thus far. (M A 100% rigorous 
response would deploy the W eierstrassian def. for the limit of an infinite 
sequence, which is a somewhat different form of epsilontic proof that 

we've opted not to spend another INTERPOLATION unpacking. For our pur
poses, the limit-of-function def. will work just as well.) 

77 meaning n 'goes to' co just like the integral sequence 1, 2, 3, .... 

(IYI Did we mention back in §2 how uncannily close the revised 
Dichotomy is to Eudoxus's own Exhaustion Property?) 
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. I 1 1 1 
convergent power senes: s" = 21 + 22 + 23 + · · · + 

2
n. And the 

thing to see is that this sn is an approximation of I in just the 
same way that .99999 ... is an approximation of I. That is, 

the swn of s" differs from 1 only by in• and this difference will 

become arbitrarily small as n increases indefinitely. 
Granted, the Cauchyesque 'arbitrarily' and 'indefinitely' 

here seem vague and unsatisfying-and Zeno wants them to; 
he wants us to be stymied by the fact that there are an infinite 

number of terms in 'i1 + ii + i3 + · · ·' and that in the real 

world you can never actually finish adding them up--in 
which case now Weierstrass to the rescue. 

A couple preliminaries will make it easier to see how this 
works. First, be apprised that the index n also functions as the 
ordinal number78 of any given term in the series s"-i.e., that 

i1 is the 1st term, i4 is the 4th term, 2~7 is the 47th term, etc. 

Notice, too, that the difference between any two successive 
terms of s" gets smaller and smaller the farther out in the 
series you get. With 'difference' in that last clause being rep
resentable as a distance on the Number Line. Meaning we're 
talking about intervals. 

78 As you may already know, the adjective here comes from 'order,' and 

ordinal number means the 1st number, the 2nd number, the 3rd number, 
etc., as opposed to the cardinal numbers 1, 2, 3, etc. In other words, ordi

nality concerns where the number is in a given sequence rather than what 
it is. The cardinal-v.-ordinal distinction turns out to be mammothly 
important in Cantorian set theory, to foreshadow which see for instance 
B. Russell's "In this theory [of a:>], it is necessary to treat separately of car
dinals and ordinals, which are far more diverse in their properties when 
they are transfinite than when they are finite." 
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So here we go. We know that the sum of the Dichotomy's 

sn will differ from 1 only by in where n = 1, 2, 3, 

To prove that 1 is actually the sum of s11 , we have to 

prove that 1 is the limit of the function (1 - i11 ) where n = l, 
2, 3, .... 79 We prove this via Weierstrass's 'f(x) has a limit L 

at point Xn if and only if, for any positive number e, there 
exists a positive number 8 such that for any x in the interval 
Ix - x11I < o, lf(x) - LI < e.' Here Land Xn are both 1, f(x) is 

( 1 - in), and x can be whatever we want-the simplest way to 

do the proof is to let x = the point in. And remember (assuming 

you did read §Se's INTERPOLATION) that the def.'s odd syntax really 
means that we need to be able to find a 8 for any E such that the 
logical conjunction (Ix - x,J < 8) & (lf(x) - LI < e) is true. 
Then the only other preliminary is making sure to remember 
what the absolute-value signs mean: I I - 1 OI and I 10 - I I 
both = 9, and lf(x) - LI and IL - f(x)I are also equivalent. 
Weierstrass uses absolute values because we're talking about 
intervals on the Number Line, i.e. about the numerical distance 
between different points, which is the same from either direc
tion. Here, what the 'I l's let us do is in effect switch the two dif
ferent subtractions' terms around, which will make the actual 
N.L.-intervals we're talking about easier to represent dearly. 

Sorry about all the verbiage-this is really easier than we're 
making it sound. So: To prove that 1 is the limit of the 

Dichotomous function (1 - in), we have to find, for any 

79 M This is, of course, the same as proving that 0 is the limit of ;. for 

n = 1, 2, 3, .... We're doing the function ( 1 - ;.) for maximum perspicuity 

w/r/t the Dichotomy. 
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positive number E such that the interval between 1 and 

(1 - in) is < E, a positive 8 such that ((1 - in)< 8) & 

( 1 - ( 1 - in) < E) is true. Which it turns out is not hard to 

do. W/r/t E and the conjunction's second term, the situation 
is sort of the reverse of the INTERPOLATION's example: 

(1 - (1 - in)< t) is never going to be false no matter what 

positive value you choose for E. Like say you decide on 

E = .001. You can then make (1 - (1 - Jn)< E) true by let

ting n equal 10 (as it will in sn's tenth term), in which case 

1 I . h' h (l 1) 1,023 . whi h 
2n = 1,024' m w 1C case - 2n = 1,024' m c case 

( ( 1 )) (1,024 1,023) 1 h" h. h 
1- 1 - 2n = 1,024 - 1,024 = 1,024' w ic IS t e same as 

.0009765, which verily is < .001. The point is that no matter 
what tiny little E you pick, you can adjust the value of n so 

that ( 1 - ( 1 - in)) comes out to less than E. 

So the conjunction's second term's always going to be 
true. Now all we have to worry about is the conjunction's 

first term and finding a 8 that will make (1 - <in) < 8) true for 

a given E. We obviously do not have the same carte blanche 
w/r/t picking 8 that we did with picking E, because our choice 

of E determines the value we assign to n and thus to J,,. and 

it's (1 - ;,.) that 8's got to be greater than. But it turns out 

that 8's dependent relation to E makes it simple to find a 
relevant 8. Let's look again at the example where E = .001 

and son= 10 and in= l,ci24 . Here we need a positive 8 such 

that (I - l,ci24) < 8. In this particular case, 8 = 1 will work 
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fine ... and in fact it turns out that 8 = 1 will work for every 
possible value of E. You can probably see why this is. It's 
because all E's possible values must, by definition, be positive. 
Even though E can get smaller and smaller-and the smaller E 

gets, the larger n has to get in order to make (I - (1 - in)) 
less than E, and the larger n gets, the closer (1 - in> will get to 

1-still, the requirement that Ebe> 0 ensures that (1 -
2
1,,} 

will always be < 1. And since, no matter what positive E you 

pick, 8 = 1 ensures that the conjunction ((1 - J,,) < 1) & 

(1 - (1 - J,,} < E) will be true, then the def.'s primary criter

ion, "for any positive number E, there exists a positive 8," is 

satisfied. Hence Lim(l -
2
1,,) = 1, hence 1 is the sum of 571• 

n-->"' 

Hence you really can cross the street. 
The Dichotomy's central confusion is now laid bare: the 

task of moving from point A to point B involves not a oo of 
necessary subtasks, but rather a single task whose 'l' can be 
validly approximated by a convergent infinite series. It is 
the mechanics of this approximation that Weierstrassian 
analysis is able to explain-meaning really explain, 100% 
arithmetically, without infinitesimals, analogies, or any of the 
natural-language ambiguity that Zeno'd thrived on. It is not 
impoverished to say that, after Weierstrass, the Dichotomy 
becomes just another Word Problem. 

A coda, though. The proof we just did is unusually 
detailed. Rarely, in an undergrad classroom, will proofs that 

Lim(l -
2
1") = 1 or Lim c

2
1n) = 0 actually get into Weierstrass's 

n~oc n....+oo 

intervals or e/8. These are now the as it were hidden founda
tion of the limits concept, its deductive justification; the 
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concept itself still gets expressed in natural-language terms 
like 'indefinitely' and 'tends to'. Which is probably fine. 
Instead of any more screeds about technical v. genuine 
answers, let's merely observe that a standard math-class 
solution to the Dichotomy will basically stop after the 2nd 
paragraph of §Se( I). That is, a math class will set up the 

. I I I +l · h convergent senes sn = 21" + 22 + 23 + · · · 
2

n, pomt out t at 

the difference between sn and 1 is in• demonstrate that this 

difference becomes arbitrarily small as n increases indefi
nitely, and teach you that the right way to handle a series like 
this is "by saying that the sum Sn approaches the limit I as n 

tends to inhnity and by writing I = l + 1- + 1- + 1- + · · · " ')• , 2 22 23 24 • 

The material in quotes is from an actual math text, revised 
ed.© 1996, emphases sic. The same text continues: 

This "equation" does not mean that we actually have to 
add infinitely many terms; it is only an abbreviated expres
sion for the fact that 1 is the limit of the finite sum s" as n 
tends to infinity (by no means is infinity). The infinite 
enters only in the unending procedure and not as an actual 
quantity. 

Let us assert, in a very calm and low-key way, that if you 
think you can detect a whiff of Aristotelianism in all these 
urgent assurances that oo does not have to be dealt with "as an 
actual quantity" in problems like the Dichotomy, you are not 
smelling things. Nor is this just a matter of the formulaic way 
math is now taught to undergrads. It's deeper than that, and 
older. A remarkable thing about nineteenth-century analysis 
and function-theory was that the more sophisticated they got, 
the more uncannily their treatment of oo came to resemble 
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Aristotle's hoary old 'potentiality' concept. And the very 
acme of this sophistication, and of this resemblance, is 
W eierstrassian analysis. 

If, however, by some additional chance you've noticed that 
the Dichotomy and its putative classroom solution concern 
only rational numbers and the N.L.-not to mention that 
our own proof's exemplary e's and 8's in §Se have also all 
been rational-then you're in a position to appreciate a sort 
of lovely irony. 

§6a. Ultimately more important than any specific 
result is the spirit in which Weierstrass redefines limits and 
continuous functions. Meaning his commitment to founda
tional rigor, apodictic hygiene, etc. Weierstrass's own Arith
metization of Analysis is 100% literal. It aims not only to 
eliminate geometrical concepts and inductive intuition from 
proofs but to base all of post-calc math on the real-number 
system in the same way arithmetic's so based. But the real
number system means the Real Line, which as we've seen is 
not exactly short of oo-type crevasses. 

There are various ways math-historians put this, as in e.g. 
Kline: "It was Weierstrass who first pointed out that to estab
lish carefully the properties of continuous functions he 
needed the theory of the arithmetic continuum," or Bell: 
"The irrationals which give us the concepts oflimits and con
tinuity, from which analysis springs, must be referred back by 
irrefrangible reasoning to the integers." The upshot is the irony 
promised at §S's end: Weierstrass's rigorous limits-concept, 
which appeared to have finally and coherently eliminated the 



DA YID FOSTER WALLA CE 

need for oo- and ~-type quantities from analysis, turns out 
itself to require a clear, rigorous theory of real numbers, 
meaning surds and the continuum of the Real Line. Re which 
see math-philosopher S. Lavine's "And that theory promptly 
reintroduced the infinite into analysis. The old infinity of 
infinitesimal and infinite numbers was simply replaced by the 
new infinity of infinitely large collections." 

The truth is that there are several different interrelated 
reasons why irrationals/reals become now a front-burner 
problem. One, as just mentioned, is foundational. Another 
involves applications: it turns out that the Weierstrassian 
E's and B's that show up in real-world problems' limits are 
often irrational, making it much harder to establish the 
8-for-any-E thing. Plus there's the aforementioned G.C.P.F.S., 
the loss of faith in Euclidean axioms, etc. There's also the fact 
that math's new emphasis on rigor and formal coherence 
highlights a logical problem in the way surds had been han
dled ever since the Divine Brotherhood first encountered 
them in §2c. That encounter was, as we saw, geometrical
meaning incommensurable magnitudes, \/2, Eudoxian ratios, 
etc.-and working definitions of surds in math had been geo
metrical ever since. This practice was, in the pellucid terms of 
B. Russell, 

highly illogical; for if the application of numbers to [geo
metric] space is to yield anything but tautologies, the 
numbers applied must be independently defined; and if 
none but a geometrical definition were possible, there 
would be, properly speaking, no such arithmetical entities 
as the definition pretended to define. 

Which argument would take too long to unpack all the way, 
but you can see the general drift. 
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So what happens is that in the 1860s and '70s various 
mathematicians start trying to work out rigorous theories of 
irrationals/reals. Big names here include W. R. Hamilton, 
H. Kossak, K. Weierstrass, F. Lindemann, H. C. R. Meray, 
G. Cantor, H. E. Heine, and R. Dedekind. Guess which ones 
we're interested in. 

First, apparently working off ideas he'd outlined in his 
U. Berlin lectures, some of Weierstrass's students and followers 

try to use his key definitions to define an irrational number 
as, in essence, the limit of a particular kind of infinite series of 
rational numbers. The def.'s technique is convulsantly tech
nical, but fortunately we don't even have to go into it because 
it turns out the theory doesn't work; it's circular. 1 This is 

because Weierstrass's irrational limit cannot exist, logically 
speaking, until there's a definition of irrational numbers. 
With 'exist' here meaning precisely what Russell means just 
above when he says "there would be no such arithmetical 
entities as the [geometric) definition pretended to define." 
You can't coherently use the concept of an irrational number 
in the definition of'irrational number' any more than you can 
coherently define 'black' as 'the color of a black dog'. So, in 
brief, the Weierstrassians' efforts never really got anywhere. 

G. Cantor's own theory of real numbers arises in the con
text of his work on something called the Uniqueness Theo
rem for trig series, and there are good reasons for waiting a 
little bit to talk about it. 

The most potent, significant, and strange-looking scheme 
for defining irrationals is that ofJ. W. R. ('Richard') Dedekind, 
1831-1916, who's a dozen years younger than Weierstrass 
but very much like him. An affable, well-adjusted person who 

1 The mathematician who first points this out: Prof. G. F. L P. Cantor. 
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spends most of his life teaching at technical Hochschulen in 
Brunswick and Zurich. A career bachelor2- who lives with his 
sister. Dedekind survives to such an old age and is so well 
liked that he shows up all over modern math: student of 
Dirichlet and Gauss at Gottingen, editor of Dirichlet's 
Zahlentheorie, lifelong friend of Riemann, semi-Weierstrassian, 
early collaborator with L. Kronecker on algebraic geometry, 
collaborator and friend of G. Cantor-and Cantor was 
not easy to be friends with. A favorite story among math
historians has Dedekind living so incredibly long that Teub
ner's famous Mathematical Calendar kept announcing his 
death on a certain day in 1899, until Dedekind finally one 
year wrote the editor that he was alive and had moreover 
spent the day in question "in stimulating conversation on 
'system and theory' with my luncheon guest and honored 
friend Georg Cantor of Halle." 

The pub.-date of Dedekind's famous "Continuity and Irra
tional Numbers"3 is 1872. It's partly a response to Cantor's 
own def. of irrationals, which had appeared as part of a big 
paper on the Uniqueness Theorem earlier that year. But evi
dently Dedekind had his basic theory in place as early as 

2 M Odd factoid: Almost all history's great philosophers never mar
ried. Heidegger's the only real exception. The great mathematicians are 
nuptially split about 50/50, still way below the civilian average. No cogent 

explanation on record; feel free to hypothesize. 
3 M= "Stetigkeit und irrationale Zahlen," whose English translation is 

in Dedekind's Essays on the Theory of Numbers--q.v. the Bibliography. 
(Let's note here also that, despite its profundity, Dedekind's paper is clear 
and accessible and rarely requires anything more than high-school math. 
In this it's unlike Cantor's stuff, which tends to be near-Medusean in its 
language and symbolism.) 
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1860; like Weierstrass (and unlike Cantor), he's not very 
ambitious about publishing his stuff. Dedekind's motivation, 
again just like Weierstrass's, came from teaching high-school 
calc: he'd gotten more and more uneasy about using unde
fined geometrical concepts to define limits and continuity. 
Instead of focusing on the arithmetization of limits, though, 
Dedekind goes as it were deeper, to the root problem that 
had occupied Zeno, the D.B.P., Eudoxus, Aristotle, and 
Bolzano, and had haunted analysis since the Fundamental 
Theorem. That problem: How to derive a 100% arithmetical 
theory of what calculus was supposed to be concerned with
pure continuity, as in motion and continuous geometric con
structs like lines and areas and volumes4-but had never 
defined with enough clarity and rigor to make its proofs 
truly sound. 

The entity Dedekind chooses to emblemize arithmetical 
continuity is the good old Real Line-which technically we 
should still call the Number Line, since only after the estab
lishment of what's called the Cantor-Dedekind Axiom does it 
become rigorously OK to talk about the Real Line. So call it 
the Number Line (Dedekind just calls it L), and recollect 
from §2c that it's ordered and infinitely dense and extended, 
and that you can use it to map the rational numbers by 
assigning to each rational a unique point on the Line. And yet 
that the whole reason analysis needs more than the rational 
numbers is that the Number Line, like all lines, is continuous 
in a way that the set of all rationals is not. The way Dedekind 

4 Weierstrass, on the other hand, was concerned primarily with conti

nuity as it pertains to functions, which ultimately depends on arithmetical 

continuity (as Kline points out at §6a's start) but is still a different kettle. 
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puts this harks all the way back to the Greeks-"Of the great
est importance, however, is the fact that in the straight line L 

there are infinitely many points which correspond to no 
rational number"-citing as an example the good old Unit 
Square's diagonal. So his strategy is simply to explain what it 
is about L that makes it continuous and gap-free when the 
infinitely dense set of rational numbers is not. Of course, he 
and we and everyone else by then all know it's the irrational 
numbers, but no one's been able to define them directly. So 
Dedekind's going to play Socrates here and act as if he's never 
even heard of irrationals and simply ask: In what exactly does 
L's continuity inhere?5 It's his answer to this question that 
makes the Real Line a mathematical reality and establishes, 
with Cantor, that the set of all real numbers composes the 
Continuum. 

§6b. INTERPOLATION 

Known today as the Dedekind Cut, R.D.'s device for con
structing the Real Line is extremely ingenious and strange, 
and before we succumb to its intricacies it's worth pointing 
out that in a deep sense it is Dedekind's willingness to treat of 
the actual infinite that enables his proof to go through. As has 

5 In case it seems circular or question-begging for Dedekind to be using 

the geometrical Number Line for a geometry-free theory of continuity, be 
advised that the N.L is just an illustrative device, one that later on in "C. 

and I.R." he'll drop in favor of "any ordered system" of numbers. Even in 

introducing the Line, Dedd<ind makes it a point to say "[I)t will be neces
sary to bring out dearly the corresponding purely arithmetic properties in 

order to avoid even the appearance as if arithmetic were in need of ideas 
foreign to it." 
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been mentioned in §5 and elsewhere, one of the reasons the 

limits concept was so welcome in analysis was that it 
accorded nicely with the old idea of the potential infinite

the idea that oo is something you can 'approach' without ever 
actually having to get there seems almost right out of the 
Metaphysics. Math's tacit embrace of Aristotle's distinction 
gets made explicit in an oft-quoted statement of C. F. Gauss 
(yes: Dedekind's Gauss) c. 1830: 

I protest against the use of an infinite quantity as an actual 
entity; this is never allowed in mathematics. The infinite is 
only a manner of speaking, in which one properly speaks 
of limits to which certain ratios can come as near as 
desired, while others are permitted to increase without 
bound. 

And so of course it's ironic that only a couple decades after 
Weierstrass rids limits of the last shadowy bits of oo you start 

seeing top mathematicians who not only embrace the actual 
infinite but use it in proofs. Dedekind is one of these. And it's 
not like he gets sold on the coherence of infinite sets by 

Cantor or Balzano or anyone else. Dedekind is, as defined 
way back in §2a, a Platonist. He clearly believes that mathe
matical reality is not so much empirical as cognitive: 

In speaking of arithmetic (algebra, analysis) as a part of 
logic I mean to imply that I consider the number-concept 
entirely independent of the notions or intuitions of space 
and time, that I consider it an immediate result from the 
laws of thought. 

Or maybe it's better to call him a phenomenologist, since to 
Dedekind the distinction between math realities as created v. 
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as discovered doesn't much seem to matter: "Numbers are 
free creations of the human mind; they serve as a means of 
apprehending more easily and more sharply the difference 
of things." 

Or look at this. In a companion essay to "Continuity and 
l.N." that's usually translated as "The Nature and Meaning of 
Numbers,"6 Dedekind evinces a remarkable proof for his 
"Theorem 66. There exist infinite systems," which runs thus: 
"My own realm of thoughts,7 i.e., the totality S of all things 
which can be objects of my thought, is infinite. For ifs signi
fies an element of S, then the thought s', that s can be an 
object of my thought, is itself an element of S, . . . " and so 
on, meaning that the infinite series ( [s] + [s is an object 
of thought] + ['s is an object of thought' is an object of 
thought] + · · · ) exists in the Gedankenwelt, which entails 
that the Gedankenwelt is itself infinite. With respect to this 
proof, notice (a) how closely it resembles the various Zeno
like VI Rs back in §2a, and (b) how easily we could object that 
the proof establishes only that Dedekind's Gedankenwelt is 
'potentially infinite' (and in precisely Aristotle's sense of the 
term), since nobody can ever actually sit down and think a 
whole infinite series of (s + s' + s")-type thoughts-i.e., the 
series is a total abstraction. 

The point is that Dedekind's proof in "Nature and Meaning" 
isn't going to convince anybody who's not already disposed to 

6 M This 1880s paper consists entirely of 17 l Theorems and Proofs 

+ I "Final Remark". You're hereby spared the German title. The English 

version is the other half of the Essays book mentioned in FN 3 supra. 
7 =German Gedankenwelt., literally 'thought-world'. 
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admit the existence8 of actually infinite systems/series/sets ... 

which both Dedekind and Cantor are. In spades. Unlike 
Dedekind, though, Cantor tends to represent himself as sort 
of dragged kicking and screaming into actual oos, as in e.g.: 

The idea of considering the infinitely large not only in the 
form of the unlimitedly increasing magnitude and in the 
closely related form of convergent infinite series ... but to 
also fix it mathematically by numbers in the definite form 
of the completed infinite was logically forced upon me, 
almost against my will since it was contrary to traditions 
which I had come to cherish in the course of many years of 
scientific effort and investigations. 

Part of this difference in presentation is that G. Cantor was a 
slicker rhetorician than R. Dedekind, and part is that he had 
to be-Cantor was on the front lines of math's battle over oo 
in a way that Dedekind never was. 

One other thing to keep in mind, though, is that Cantor's 

transfinite math will end up totally undercutting Aristotelian 
objections like the above (b) to Dedekind's proof, since Can
tor's theory will constitute direct evidence that actually-infinite 
sets can be understood and manipulated, truly handled by the 
human intellect, just as velocity and acceleration are handled by 
calculus. So one thing to appreciate up front is that, however 
abstract infinite systems are, after Cantor they are most defi
nitely not abstract in the nonreal/unreal way that unicorns are. 

ENDINTERP. 

6 meaning mathematically, although in the proof it's not clear whether 

Dedekind's "infinite system" S is represented as a strictly mathematical 

entity or as a more general Platonic·Formish one-which is another prob

lem with his argument. 
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§6c. Back to Dedekind's opening gambit of asking what 

distinguishes the continuity of the Number Line L. As it hap
pens, Galileo, Leibniz, and Bolzano had all tried positing that 

the continuity of L was really based on the infinite density of 
its constituent points-Le., on the fact that between any two 
of the N.L.'s points you can always derive a third point. As 
we've seen, though, the same feature applies to all rationals of 

the form ~,9 and since (1) every rational number can be put 

into the form ~,10 and (2) we already know that the set of 

9 IYI You might recall that §2e's q + (p; q) proof of the 3rd-point 

thing involved distances on the Number Line, which might look a bit 

circular in the present context, in which case here's a 100% arithmetical 

formula for finding the medial value. Take any two successive rational 

numbers expressed as fractions, like say ~; and ~~· and double all four 

. all all . . al . th 82 d terms, automanc y owing mtegr space m e numerators---
154 

an 

84 . h" h . h d"al 83 
154

-mw 1c tomsertt eme 1 
154

. 

lO m An algorithm that people who find this sort of thing fun will find 

fun: Any rational number expressed as a terminating or periodic decimal 

can be transposed into ~ form by (a) multiplying the decimal by 10", 

where n = the number of digits in the decimal's basic period (e.g., the 

period of .11111 ... is l; the period of 876.9567567567567 ... is 3), then 

(b) subtracting the original decimal from the quantity in (a), then (c) 

dividing the result by (10" - 1), then (d) reducing the result by eliminat

ing any common factors. Example: x = 1.24242424 . . .; so n = 2; so 

10" = 100. 

lOOx = 124.242424 ... 

- x = 1.242424 ... 

99x = 123 

123 . 41 Sox= 99, which reduces to x = 
33

. 
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all rationals isn't continuous, Dedekind dismisses the idea 
that L's continuity inheres in any kind of density or 'hang
togetherness': "By vague remarks upon the unbroken con
nection in the smallest parts [of L] obviously nothing is 
gained; the problem is to indicate a precise characteristic of 
continuity that can serve as the basis for valid deductions." 

Dedekind's coup is to locate this "precise characteristic" 
not in L's density or cohesion but rather in an obverse prop
erty, severability, which in turn is a consequence of the Num
ber Line's being ordered and successive, i.e. of every point on 
the N.L. being to the right of all smaller-numbered points 
and to the left of all larger-numbered points. This means that 
at any particular point, we can as it were cut11 the Number 
Line into two parts, two mutually exclusive infinite sets, 12 A 
on the left and Bon the right, where every rational number in 
B is greater than every rational number in A. Here "Continu
ity and Irrational Numbers" (which is, as mentioned, unusu
ally chatty for a technical math paper) has a 'I-long aside 
where Dedekind sort of kicks at the ground and pretends to 
apologize for how lame and obvious the schnitt thing must 
seem, e.g.: "[T]he majority of my readers will be very much 
disappointed in learning that by this commonplace remark 
the secret of continuity is to be revealed." The remark he's 

11 Dedekind's own verb here is geschnitten (n. = schnitt), which appar
ently can connote everything from s~cing to cleaving-a very concrete, 
physical word, and rather more fun to say than 'cut'. 

12 M The translation of "Continuity and Irrational Numbers" uses 
'classes,' which was math's original term for sets. Cantor, Russell, et al. 

tend to say 'dass'-although in truth Cantor also sometimes uses words 
that translate as 'manifold' or 'aggregate'. Command Decision: From here 
on out we're just going to use 'set' . 
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referring to is the logical converse of the above severability
statement, that is: 

If all points of the straight line fall into two classes such that 
every point of the first class lies to the left of every point of 
the second class, then there exists one and only one point 
which produces this division of all points into two classes, 
this severing of the straight line into two portions. 

What this means is that by defining the members and bounds 
of sets A and B, you can define the value of the point at which 
we cut L into A and B. And, as you'll recall from §2c, defining 
a point is defining a number. 

Except, since the Line in question is the Number Line and 

maps only the rational numbers, it's fair to ask just how a 
schnitt is going to help define irrational numbers, which 
numbers are of course the true "secret of continuity". That 
every rational number will correspond to a schnitt but not 
every schnitt will correspond to a rational number might 
seem like just a restatement of the assertion that we can't 
define irrationals in terms of rationals. The answer is that 
Dedekind can literally build the definition of each irrational 
number out of the characteristics of the two sets it divides the 
Line into. Here's how the method works. 

Consider a schnitt on the N.L. dividing the whole oo of 
rational numbers into two sets A and B such that all members 
b of B are greater than all members a of A. More specifically, 
consider whether A and B here can have largest/smallest 
members.13 Depending on where and how the schnitt is 

13 IYI If you're flipping back, notice how close this is to the Cantorian 
stuff about infinite sets' orders in §7c ff. 
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defined, there are only three possibilities, of which only one 
can be true. Possibility 1 = Set A has a largest member a' (as 
in e.g. if the cut's A contains all rational numbers :52 and B 

contains all rational numbers >2). Possibility 2 =Set B has a 
smallest member b' (as in e.g. if the cut's A contains all ratio

nal numbers < 2). Possibility 3 = There is neither a largest 
member of A nor a smallest member of B. * 

,.MINI-INTERPOLATION 

Re these being the only three options, you can probably already 
see that there's no way set B is ever going to have a largest 
member, because B comprises everything from the schnittto oo. 

And Dedekind's Lis the real N.L and also includes all the ratio
nals stretching leftward from 0, so A encompasses everything 
from -oo to the schnitt and can't have a smallest member. In 
case you're wondering, though, why there can't be a Possibility 
4 in which there's both a largest member a' of A and a smallest 
b' in B, there's an easy way to prove this isn't possible. It's a 
reductio proof, so we posit that there is both a largest a' and a 
smallest b'. But this means that there will exist a certain ratio-

a' + b' nal nwnber, equal to 
2 

, that is both larger than a' and 

smaller than b', and thus can be a member of neither A nor B. 
But A and B have been defined as together containing all the 
rational numbers. So Possibility 4 is contradictory. 

But so then why isn't Possibility 3 contradictory in the 
same way? 

DRAMATIC END OF MINl-INTERP. 

Stated informally, Dedekind's example for Possibility 3 is a 
schnitt whose set A contains all the negative rational numbers 
and all positive rationals x such that x2 < 2, and whose set B 
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contains all the positive rationals x such that x 2 > 2. If it can 
be proved that no rational number corresponds to this 
schnitt, we will have defined a certain irrational number, in 
this case the millennially incommensurable V2 .14 

We've already seen, in §2c, a proof that V2 isn't rational15
; 

we could rest on that laurel. But Dedekind doesn't, and pro
vides his own specific proof that the schnitt in Possibility 3's 
example corresponds to no rational number. Which here it 
is. We might all want to breathe deeply for a moment and get 
very relaxed and attentive. Dedekind's is a reductio proof and 
so starts by assuming that there is indeed a rational x corre
sponding to Poss. 3's schnitt. If this x exists, then by the defi
nition of set A, either xis A's largest member or else it's larger 
than any member of A (meaning it's in B). Either way, any 
number that's larger than x {let's call such a number x+) is, by 
definition, absolutely going to be in set B, which means that 
(x+)2 must be >2. If, then, for any suitable x, we can produce 
an x+ greater than x where {x+)2 < 2, the initial assumption 
that x is rational will be contradicted. 

So accept the above specs on x and x+, and define some 
positive number p as equal to (2 - x2

), and define x+ as 

14 m Dedekind's real example in "C. and I.N.n is more abstract and 
uses the fact that if Dis a positive integer that is not the square of any inte
ger, then there exists a positive integer >.. such that h.2 < D < (>.. + 1)2

, 

which happens now to be a basic theorem of number theory. Dedekind 
wants a totally abstract, general proof because his real goal is quote "to 
show that there exist infinitely many cuts not produced by rational num
bers. n His own proof is too hairy and number-theoretic for our purposes, 
though, so we'll just use Vz and ask you to trust that this result can be 
extended to cover all irrationals (which it can). 

15 m See or recall the incommensurability-of-~ demo on pp. 77-78. 
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equal to (x +~).That last def. may look a bit strange, but you 

can easily verify that given the original specs and value of p, 

(x + ~) will be greater than x, so the crucial x+ > x thing is 

preserved. Now the rest of the proof is just good old tedious 
8th-grade math: 

(1) (x+)2 = (x + Ey 
4 

(2) (x + ~)2 = x 2 + X: + ~. Since x is by definition 

greater than 1, x2 > x, so t 2
P) > (xp)' so 

2 2 

(3) (x2 + xp + P
2
) < (x2 + X

2
P + P

2 
)· Multip1ying this 

2 16 2 16 

larger quantity through to make 16 the common 
denominator, you get 

(4) (l6x
2 
+ Bx

2
P + P\since,bydefinition,p= (2- x 2), 

16 

then clearly x2 = (2 - p); so by substitution the 
quantity in (4) becomes 

(5) ( 16(2 - p) + :~2 - p)p + P\whichafterdistributing 

the constants becomes 

32 - 16p + (16 - Bp}p + p2 
( 6} ( 

16 
) , which after distrib-

uting the 2nd term's p then becomes 

32 - 16p + 16p - Bp2 + p2 
(7) ( 

16 
), which quite obviously 

reduces to 
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(8) 

(9) 

(10) 

(11) 
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32 - 7p2 
( 

16 
), which is the same as 

(2 - {
6 

p2
), which quantity, given that pis by defini

tion> 0, is always going to be< 2. So by steps OH9) 
(with particular highlights on (1), (3), and (9)), we 
have established that 

(x+)2 < (2 - {
6 

p2) < 2, which by the basic law of 

transitivity means that 
(x+)2 < 2, which is precisely what we needed in 
order to contradict the initial assumption that the 
schnitt corresponded to a rational x. Meaning it 
doesn't correspond to a rational x. Q.E.D. 

Dedekind, right after the proof: "In this property that not 
all cuts are produced by rational numbers consists the 
incompleteness or discontinuity of the domain of all rational 
numbers." But this isn't the half of it. The schnitt device 
allows irrational numbers to be defined wholly in terms of 
the rationals, which is the only way to engineer a 100% rigor
ous, deductive theory of real numbers. The definition, in 
English, is that an irrational number is the value of a point at 
which a schnitt divides the N.L. into a bilaterally exhaustive set 
A and set B that have no largest or smallest member respec
tively.16 It's this definition that creates the Continuum-i.e., 
the set of all real numbers-and transforms the Number Line 
into the Real Line.17 What's especially cool and ingenious is 

16 IYI Hence Dr. Goris's own classroom de£ of a surd as a 'schnitt sand

wich,' which obviously went over big with adolescents. 
17 Anent a tossoff on p. 201: That the points on the R.L. can be put into 

one-to-one correspondence with the set of all real numbers is what's now 

known as the Cantor-Dedekind Axiom. 
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that Dedekind's technique uses just what had made surds so 
mysterious--their correspondence to unnamable points on 
the N.L.-as part of their rigorous def. 

§6d. Of course, Dedekind's theory also presupposes the 
existence of actually-infinite sets. More than presupposes--via 
the schnitt device, the formal definition of a real number 
becomes 'A certain pair of infinite sets with certain particular 
characteristics'. There are a number of potential weirdnesses to 
notice at this point. First, given math's longstanding and much
referenced allergy to actual oos, Dedekind's theory might well 
be seen as simply trading one indefinable-type quantity for 
another-i.e. as invoking, in order to ground and define surds, 
the occult idea of not one but two unimaginably huge and yet 
precisely ordered sets, each one somehow infinite and yet lim
ited in very specific ways. Which might strike you as just too 
much like Zeno all over again. If so, hold that thought. 

Second weirdness: If you're unusually attentive and 
unborable, you might already have remarked a striking resem
blance between Dedekind's theory and Eudoxus of Cnidos's 
geometric-commensurability thing back in §2d. With respect 
to which please recall or review §2d and see that the schnitt 
concept now helps make it clearer how Eudoxus's definition 
of 'ratio' works to designate irrational numbers: the number 

expressed by the ratio ~ is irrational (that is, p and q are 

incommensurable) just when, for any rational number~· the 

disjunction (ap < bq) or (ap > bq) is true, 18 meaning when 
ap.,, bq. There's no imputation here that Dedekind was 

.. 
18 m Logicwise, a disjunction is true if at least one of its tenns is true. 
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ripping Eudoxus off or necessarily even knew who he was. 
See for example the Preface to "The Nature and Meaning of 
Numbers," in which Dedekind cites the Elements's Eudoxian 
Def. 5 without any evident awareness of where Euclid got it. 
This citation points up the big difference between Dedekind 
and Eudoxus, as well as between Greek math and modern 
analysis: 

[I]f one regards the irrational number as the ratio of two 
measurable quantities, 19 then is this [=Dedekind's own] 
manner of determining it already set forth in the clearest2° 
possible way in the celebrated definition which Euclid 
gives of the equality of two ratios (Elements, V, 5). 

The difference lies in the opening "If ... measurable quanti
ties" clause. Eudoxus and Euclid were (once again) geometers, 
and for them the problem of irrationals concerned geometric 
magnitudes like lines/areas/volumes. Whereas Dedekind's 
overall project (like, again, Weierstrass's own) is to get away 
from the geometry and ground analysis wholly in arithmetic.21 

19 This is D.'s term for geometric magnitudes. 
20 ulp 
21 IYI A related difference between Eudoxus and Dedekind is the way 

they conceive their respective theories' infinite sets. Recollect from later on 

in §2d that Eudoxus's Exhaustion Property involves infinite sets in the 

sense of infinite sequences of remainders-from-subtractions, except of 

course here the subtractions are from geometric magnitudes and the 
oo is only potential-as in, recall from p. 85, Elements X, Prop. I's 

'I,J..iu p(l - r)n = O,' which is just the way pre-Dedekind analysis would 
have treated Exhaustion's infinite remainders. 

Mathematically and metaphysically, Dedekind's view is the exact oppo

site of Eudoxus's. Dedekind regards his own theory's geometric line/point 
thing as only theoretical and illustrative: it doesn't matter whether you could 
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This is why Dedekind says over and over again that the N.L. 
and geometric points in his schnitt theory are For Entertain
ment Purposes Only. His aforementioned Preface actually has 
one of the most stirring statements ever on the aesthetics of 
Arithmetization, viz.: "All the more beautiful it appears to me 
that without any notion of measurable quantities and simply 
by a finite system of simple thought-steps man can advance to 
the creation of the pure continuous number-domain." 

On the other hand, whether it's OK to say that deploying 
actually-infinite sets in a mathematical definition involves 
only "a finite system of thought-steps" is a fair question, 
which returns us to the issue we tabled two ts back. If it so 
happens that you object to the use of infinite sets in a rigor
ous definition because you feel that such actual-co-type sets 
are mathematically unrealiillicit, then you are of course an 
Aristotelian-slash-Gaussian and will count as your #1 advo
cate Prof. L. Kronecker (1823---1891), who as mentioned was 
G. Cantor's one-time mentor and later his arch nemesis and 
the person some historians think more or less singlehandedly 
drove him insane, and who (=Kronecker) was pretty much 
math's first Intuitionist, and believed that only integers were 
mathematically real because only they were 'clear to the intu
ition,' which meant that decimals, irrationals, and quite cer
tainly infinite sets were all mathematical unicorns. Kronecker 

ever really construct a complete Number Line or measure the exact lengths 

needed to isolate the point Vi. What do matter-and are for Dedekind 

actual, since after all "Numbers are free creations of the human mind" and 

mathematical existence is "an immediate result from the laws ofthought"

are the infinite sets A of all x2 < 2 and B of all x2 > 2. It is these oos, and not 

any geometric figures or quantities, that are fundamental to Dedekind's theory. 
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is often nutshelled in math history by his apothegmatic "The 
integers alone are created by God; all else is the work of 
Man," the same way that d'Alembert gets encapsulated by 
"Keep moving and faith will come" and Archimedes by 
"Eureka!"22 There is more than you probably want to hear 

22 m The other big apocryphum about Kronecker concerns his reac
tion to F. Lindemann's proving in 1882 that 1T was a transcendental irra

tional (which proof finally put a stake through the heart of the Greeks' old 
Squaring the Circle problem). The story has Kronecker coming unbidden 
up to Lindemann at a conference and saying, very earnestly, "What use is 

your lovely proof about 1T? Why waste your time with problems like these, 
since irrationals don't even exist?" Lindemann's reaction is not recorded. 

Quick profile of L. Kronecker l'homme. 8.-D. dates already given. One 
of very few top mathematicians who was also a great businessman, Kro
necker makes such a fortune in banking that at 30 he can retire and devote 

his life to pure math. Becomes a prof at U. Berlin, the Harvard of 
Germany, where he'd also been a star student. Researchwise, he's mostly 
an algebrist, his specialty being algebraic number-fields, which are a long 

story-likewise his most famous discovery, the Kronecker Delta Function, 
which in some ways anticipates the binary math of modern digitation. A 
serious gymnast and mountain-climber, Kronecker is no more than 5'0" 

and lithe and muscular and always immaculately coiffed and dressed and 
accessorized. No kidding about the 5'0". Courtly of manner, apparently, 
even though he's a total piranha in math- and academic politics. Very 

active and well-connected in the whole math community-the sort of col
league you do not want as an enemy because he's on every committee and 

editorial board there is. Main ally: the number-theorist E. E. Kummer. 
Main pre-Cantor enemy: the prenominately tall, rumpled, phlegmatic 
K. Weierstrass. Descriptions of Kronecker-v.-Weierstrass debates often 
feature the image of a rabid Chihuahua going after a Great Dane. Reason 
for antipathy: (I) Weierstrass's specialty is continuous functions, which 
Kronecker thinks are delusory and evil; (2) Kronecker believes that 

Weierstrass's Arithmetiz.ation of Analysis program doesn't go near far 
enough-see main text below. Kronecker's big dream: basing all of analysis 
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about L. Kronecker and Intuitionism a few §s down; for now 
it's enough to know that just as Weierstrass, Dedekind, et al. 
want to eliminate geometry from analysis and base every
thing on the real-number system, Kronecker goes even fur
ther and wants to base analysis only on integers and on 
rationals expressed as ratios of integers. 

So now back to the specific can't-use-infinite-sets-in-a
definition objection to Dedekind's theory of real numbers. 
There are at least two nontrivial ways to respond to this. The 
first is to say (pace FN 21) that Dedekind's theory does not 
really require us to handle infinite sets in § 1 's special sense 
of 'handle'. Strictly speaking, the schnitt technique doesn't 

presuppose actual oos any more than 'Lim (1 -
2
1S does. 

n--+"' 

Which is to say that the infinite sets A and Bin Dedekind's 
theory are entirely abstract, hypothetical: we don't have to 
count them or picture them or even think about them beyond 
knowing that B > A and deciding the largest a' -v.-smallest 
b' -v.-neither issue. 

If you are unmoved by this response and still feel that all 
Dedekind's supposedly rigorous de£ is doing is trading irra
tional numbers' mathematical fuzziness for that of infinite 
sets, then it is appropriate to point out that right at the time 
"Continuity and Irrational Numbers" comes out, G. F. L. P. 
Cantor is beginning to publish work that defuzzifies just the 
sorts of actually-infinite sets Dedekind is positing. As was 

on the integers. K.'s ultraconservative math-ontology is now regarded as the 

forerunner of lntuitionism and Constructivism, though it had no other 

adherents until Poincare and Brouwer-all of which gets unpacked at length 
in§7. 
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foreshadowed in §§ 1 and 4, Cantor and Dedekind's near
simultaneous appearance in math is more or less the Newton + 
Leibniz thing all over again, a sure sign that the Time Was 
Right for oo-type sets. Just as striking is the Escherian way the 
two men's work dovetails.23 Cantor is able to define and 
ground the concepts of 'infinite set' and 'transfinite number,' 
and to establish rigorous techniques for combining and com
paring different types of oos, which is just where Dedekind's 
def. of irrationals needs shoring up. Pro quo, the schnitt tech
nique demonstrates that actually-infinite sets can have real 
utility in analysis. That, in other words, as sensuously and 
cognitively abstract as they must remain, oos can nevertheless 
function in math as practical abstractions rather than as just 
weird paradoxical flights of fancy. 24 

Also almost eerie is the timing. Dedekind first learns of 
G. Cantor's existence in March, 1872, when he reads the lat
ter's "Ober die Ausdehnung eines Satzes aus der Theorie der 
trigonometrischen Reihen"25 in a big journal as he's putting 
the finishing touches on "Continuity and Irrational Num
bers," into the last draft of which he sticks a Cantor-citation 
and a "hearty thanks" to "this ingenious author" whose 
paper's own theory of irrationals*" ... agrees, aside from the 
form of presentation, with what I designate as the essence of 

23 M Dr. Goris liked to say that Weierstrass, Dedekind, and Cantor 

composed their own special convergent series, with each in turn supplying 

just what the others needed to make their advances viable. 
24 There are, it goes without saying, late-nineteenth-century mathemati

cians to whom none of this is convincing. Kronecker is only one of them. 
25 = roughly "On the Extension of a Proposition from the Theory of 

Trigonometric Series," which is C.'s first important article and will occupy 
much of the next two §s. 
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continuity." Then later that same year they meet, by accident, at 
some vacation retreat in Switzerland. They literally bump into 
each other. Cantor is a privatdozent at the University of Halle, 
Dedekind teaching high school in Brunswick. 26 They hit it off, 
and start exchanging letters-and a lot of Cantor's most signifi

cant results get worked out in these letters. But the two are 
never true collaborators, and there's apparently a big falling out 
in the 1880s when Cantor finagles Dedekind a professorship at 

Halle and R. D. turns it down (although they must have eventu
ally made up if they're having day-long lunches together in 
1899). Again, most of this sort of personal stuff we're skipping. 

§6e. "SEMl-M INTl!RPOLATION 

G. Cantor's theory of irrationals, which as mentioned is mostly 
in '72's "Ober ... Reihen," is both technically complex and ulti

mately less significant than the larger set-theoretic work it's 

part of,27 and depending on your overall i;t~rest ratio you may 
at1gue 

wish to do no more than skim the following gloss, which occu
pies a tricky rhetorical niche and has been classed SEMI-m. 

Cantor is less concerned with defining irrationals per se 
than with developing a technique by which he can define all 
real numbers, rational and irrational, in the same way. It's 

26 M Gorisian factoid: Brunswick is best known for its inexplicably 

popular Braunschweiger sandwich spread, which is a little like poite that's 

been allowed to solidify in the toe of an old gym-sneaker, and which dur

ing our class's Dedekind-Cantor unit everyone was invited (for Extra 

Credit) to try a little of on a Wheat Thin. 
27 More to the point for us is that Cantor's theory of irrationals just isn't 

as good as Dedekind's. The latter is simpler and more elegant and (rather 

ironically) makes better use of cxi-type sets. 
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actually Cantor who first introduces to math the idea of a set 
of all real numbers comprising both the rationals and the 
surds (which Dedekind, for complicated reasons, objects to). 
Cantor's own theory obviously depends on infinite sets, too; 
but for Cantor at this point these are more like infinite sets of 
infinite sequences of rational numbers. Hence part of his 
theory's hairiness. Another part is that Cantor wants to use 
the Weierstrassian idea of irrationals-as-limits without the 
circularity problem mentioned in §6a, which leads him to use 
convergent sequences rather than series. 

More specifically, in order to avoid Weierstrass's def.'s 
circularity, Cantor exploits the facts that (1) all real numbers 
can be represented by infinite decimals (these rational deci
mals alw~ys either infinitely repeating their basic period (as 
in §6c FN 10) or else ending in an oo of Os or 9s (which, 
retrieving the lagan from §2c FN 35, are equivalent, as in the 
whole 0.999 ... = 1.000 ... thing)), and that (2) infinite 
decimals function as limits of decimal fractions. (You learned 
decimal fractions in 4th or 5th grade; they're the way we 
teach kids to make sense of decimals in terms of fractions, as 

in for instance 0.15 = ¥ + 1~ + 1 ~0 . Here, then, is another 

place where high-end analysis turns out to underlie child-
,. 

hood arithmetic: the general rule is that any infinite decimal 
can be represented as the convergent infinite series 
£1ol00 + a110-I + ail0-2 + a310-3 + • .. + anlO-n + . • ·, 
which series sums/converges to the original decimal-Le., the 
decimal is the series' limit. 28

) Then, through a clever bit of 

u IYI You'll likely notice some marked similarities between the stuff 

on decimal fractions and §Se(I)'s thing about approximating rational 

numbers via convergent .power series of other rationals. Rhetoricwise, let's 
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math-semantics, Cantor can bag the whole decimals thing by 
observing, in the spirit of §Sd, that any sequence29 of rational 
numbers' converging is the same as its being representable by 
an infinite decimal, which decimal is thus mathematically 
defined by the sequence. 

(m If the above 1 seems shifty or convoluted, we can 
reduce the argument to a simple syllogism: 'Since ( 1) all 
numbers are definable by decimals and (2) all decimals are 
definable by sequences, (3) all numbers are definable by 
sequences,' which happens to be 100% valid.) 

Given all this, Cantor's basic idea is that an infinite sequence 
ao. a)J "2· ... , an, ... of rational numbers defines a real num
ber if the sequence converges such that l:!m- (an+ m - an) = 0 
for any arbitrary m 30-that is, if the difference between any 
two successive terms tends to 031 as you get farther and 

concede one more time that if we were after technical rigor rather than gen

eral appreciation, all these sorts of connections would be fully traced out/ 

discussed, though of course then this whole booklet would be much longer 

and harder and the readerly-background-and-patience bar set a great deaJ 

higher. So it's all a continuous series oftradeoffs. 
29 IYI Surely it's unnecessary to stress once again that a series is just a 

particular type of sequence. 

:io IYI If you've noticed how similar this is to §Sa's Cauchy Convergence 

Condition (q.v. E.G. II, -Differential &/uations (b)), you can understand 

why Cantor doesn't say the a-sequence defines a real number if and only if 
it converges in this way, but merely if it converges. 

31 Naturally this is just shorthand. In the real" Ober . .. Reihen," Cantor 

follows Weierstrass's program and eschews 'tends to' /'approaches' in favor 

of the good old little epsilon; so technically the sequence's limit is defined 

by the rule that for any given E, no more than a finite number of the 

sequence's successive terms can fail to differ from each other by a value m 

such that m < E. 
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farther out in the sequence (which of course is just the way 
decimals really work: by the nth decimal place, successive val- . 
ues can differ by at most 10-n). Cantor calls sequences that 
behave this way fundamental sequences, and what's known as 
Cantor's Theory of Real Numbers is that each real number is 
defined by at least one fundamental sequence. 

A couple potential objections at this point. If it strikes 
you as maybe a bit circular or question-begging for Cantor 
to define 'real number' as that-which-is-defined-by-a
fundamental-sequence-rather like defining 'dog' as that
which-is-defined-by-the-definition-of-'dog'-then we have 
to get clear on just what 'define' means w/r/t Cantor's theory. 
It pretty much means 'is' or 'equals'. That is, what enables the 
theory to avoid circularity is that the relevant fundamental 
sequence is the real number, the same way that 0.15 is 
Lim (0(10°), 1(10-1

), 5(10-2
)) and a trig function is its con

vergent-series expansion. On the other hand, since the real 
numbers include both the irrationals and the rationals, you 
might be wondering whether and how Cantor's fundamental 
sequences of rationals can also define rational numbers, or 
whether the idea even makes sense. The answer is that it 
does and they can: Cantor's stipulation is that when a funda- ' 
mental sequence ao, ... , an, ... has each of its terms after an 
equal to either 0 or a, the sequence defines (=is) the rational 
number a.32 

In order to make his theory truly viable, Cantor still has to 
show how to prove arithmetical properties and perform basic 
operations with his fundamental sequences and the real 

32 m Example of a fundamental sequence where a..+1 = 0: 0.1500000 ... ; 

example where a0 +1 = a: 0.66666 .... 
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numbers they define. What follow are a couple examples of 
his paper's demonstrations, with our relevant real numbers 
here being x and y: 

(A) Since it turns out that you can define the same real x 
via more than one fundamental sequence,33 Cantor's 
rule is that two fundamental sequences ao, a1, a:i, .•. 
and b0, b1, b2, • • • define the same x if and only if 
Ian - bnl approaches34 0 as n tends to oo. 

(B) To prove basic arithmetical operations, let's say an and 
bn are fundamental sequences defining x and y respec
tively. Cantor proves (in an orgy of high-tech symbol
ism that we're omitting) that (an ± bn) and (an X bn) 

are also fundamental sequences, thus defining the real 

numbers x ± y and x x y. In his proof that ~: is a 

fundamental sequence defining~, the only restriction 
is that x obviously can't be 0. 

As a sort of wrap-up, you might have noticed one other 
potential objection. A rather nasty one. And perhaps the sin
gle most impressive thing about Cantor's theory of reals-via
fundamental-sequences--and what makes Dedekind call him 
ingenious-is the way Cantor avoids this lethal VIR-type 
objection that at first his theory looks vulnerable to. For if 
fundamental sequences of rational numbers define real num
bers, what about fundamental sequences of real ( = both 
rational and irrational) numbers? You can easily construct a 

33 infinitely many, as a matter of fact, though the proof's too involved 

to get into. 
34 Shorthand again. Same with the next verb phrase. 
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real-number sequence that converges according to Cantor's 
specs-many kinds of trig series already do. Do we need to 
create a whole new class of numbers to function as the limits 
of these real-number sequences? Ifwe do, then we'll need still 
another class to serve as the limits of fundamental sequences 
of those new numbers, and then yet another ... and off we 
go; it'll be Aristotle's Third Man all over again. Except Cantor 
heads this off by proving35 the following theorem: If rn is a 
sequence of real numbers such that J.i.IU (r11+m - r,.) = 0 for 
an arbitrary ~that is, if r11 is a bona fide fundamental 
sequence of reals-then there is some unique real number r, 
defined by a fundamental sequence a11 of rational a's, such 
that Lim r,. = r. In other words, Cantor is able to show that 

n-><&> 

real numbers themselves can serve as the limits of fundamen-
tal sequences of reals, meaning his system of definitions is 
self-enclosed and VIR-proof. 

§6f. As was vaguely foreshadowed in §6d, Dedekind's and 
Cantor's theories run afoul of yet another Kroneckerian doc
trine, often known as Constructivism, which will become a big 
part oflntuitionism and of the controversies over math's phild
sophical foundations touched off by set theory.36 This all gets 

35 again, offstage-it would take several pages and a whole other EMER

GENCY GLOSSARY to unpack it. We'll be spending more than enough time on 
Cantor's formal oo-proofs in §7 as it is. 

36 M Some math-historians use 'Constructivism' to mean also Intu
itionism, or vice versa, or sometimes Operationalism to mean both C.ism 
and I.ism-plus there's Conventionalism, which is both similar and some

what different-and the whole thing can just get extremely convolved and 
unpleasant. From here on, we're going to classify the various schools and 
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very heavy and complicated, but it's important. Here are the 
basic principles of Constructivism as practiced by Kronecker 
and codified by J. H. Poincare and L. E. J. Brouwer and other 
major figures in Intuitionism: ( 1) Any mathematical state
ment or theorem that is more complicated or abstract than 
plain old integer-style arithmetic must be explicitly derived 
(i.e., 'constructed') from integer arithmetic via a finite num
ber of purely deductive steps. (2) The only valid proofs in 
math are constructive ones, with the adjective here meaning 
that the proof provides a method for finding (i.e., 'construct
ing') whatever mathematical entities it's concerned with.37 

ideologies in as nongrotesquely simple a way as possible. (Please N.B. also 

that we're going to be discussing no more of the whole Intuitionist contro

versy than is directly mission-relevant. For readers especially interested in 

the metamathematical debate that starts with Kronecker and ends with 

Godel's foundational demolitions in the 1930s, we're pleased to recommend 

P. Mancuso, &i's From Brouwer to Hilbert, S. C. Kleene's Introduction to 
Metamathematics, and/or H. Weyl's Philosophy of Mathematics and Natural 

Science, all of which are in the Bibliography.) 

'J7 There's an interesting English-language coincidence in the Kroneckeroid 

idea of constructive proof. As well as literal connotations like 'involving 

actual construction,' the word 'constructive' for us can mean 'not destruc

tive'. As in good rather than bad, building up rather than tearing down. 

The main kind of destructive proof happens to be the reductio ad absur

dum; and sure enough, Constructivism does not consider the reductio a 

valid proof-procedure. The real reason, though, is that the reductio 

depends logically on the Law of the Excluded Middle, by which (as you'll 

recall from §le) every math-type proposition is, formally speaking, either 

true or if not true then false. Constructivists (esp. the extremely eccentric 

and humorless L. Brouwer) reject LEM as a formal axiom, mainly because 

LEM can't be constructively proven; that is, there is no stated decision pro

cedure by which you can verify, for any proposition P, whether P is 
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Respecting the metaphysics of math, Constructivism is there
fore directly opposed to Platonism: except for maybe the 
integers, mathematical truths do not exist apart from human 
minds. In fact, as far as Kronecker et seq. are concerned, to 
say that a certain mathematical entity 'exists' is literally to say 
that it can be constructed w/ pencil and paper by real human 
beings within mortal timespans. 

You can see, then, that Constructivists are going to have a 
serious problem with theorems and proofs that involve oo, 
infinite sets, infinite sequences, etc.-particularly when these 
infinite quantities are explicitly presented as actual. With 
respect to Dedekind's schnitts, for instance, the Construc
tivists' shorts are obviously going to be in a knot from the 
outset. Not only do irrationals not really exist, and not only 
does Dedekind use reductio to prove that some schnitts don't 
correspond to rational numbers. There's also the whole prob
lem of defining a number in terms of infinite sets of other 
numbers. For one thing, Dedekind doesn't ever specify the 
mathematical rules by which one derives the sets A and B. 

true or false. Plus there are all sorts of important math hypotheses-such as 

e.g. Goldbach's Conjecture, the Irrationality of Euler's Constant, and Can

tor's own upcoming Continuum Hypothesis-that either can't be proved 

yet or can be shown to be LEM-grade unprovable. Etc. etc. (Note, IYI, that 

however cranky or fundamentalist Constructivism might sound, it's not 

without influence and value. The movement's emphasis on decision proce

dures was important to the advent of mathematical logic and computer 

design, and its rejection of LEM is part of why Intuitionism is regarded as the 

forefather of multivalued logics, including the Fuzzy Logics so vital to 

today's A.I., genetics, nonlinear systems, etc. (IY very I Regarding that last 

item, readers with hypertrophic math backgrounds and a lot of time on their 

hands should see Klir and Yuan's Fuzzy Sets and Fuzzy Logic: Theory and 
Applications, whose specs are also in the Bibliography.)) 
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He simply says if the Number Line can be divided into A and 
B ... , without giving any method or procedure by which one 
could actually construct these sets-sets that can't really be 
constructed or verified anyway, since they're infinite. And 
while we're at it, just what exactly is a 'set,' technically speak
ing; and what's the procedure for constructing one? And so on. 

That last Constructivist compound-question (which 
admittedly Dedekind can't answer38

) affords a prime instance 
of G. Cantor Jr.'s particular genius and of why he deserves 
the title Father of Set Theory. Recall §3c's mention of how 
Cantor took what had been regarded as a paradoxical, totally 
unhandlable feature of 00-namely that an infinite set/class/ 
aggregate can be put into a one-to-one correspondence with 
its own subset-and transformed it into the technical def. of 
infinite set. Watch how he does the same thing here, turning 
what appear to be devastating objections into rigorous cri
teria, by defining a set S as any aggregate or collection of 
discrete entities that satisfies two conditions: ( 1) S can 
be entertained by the mind as an aggregate, and (2) There is 
some stated rule or condition via which one can determine, 
for any entity x, whether or not xis a member of S.39 

This definition doesn't just suddenly appear out of the 
blue, obviously. It now becomes appropriate to revisit §Sd's 
stuff about trig-series convergence and representability, 
Riemann's Localization Theorem, etc., in order to see where 
Cantor's work on surds and sets really comes from. 

38 although in all fairness it's not really his area. 
39 IYI There's more detail/context on this def. coming up in §7a. For 

now, a good example of a set would be the set of all irrational numbers, 
especially since we just saw Dedekind spell out a very definite procedure 
for determining whether any given number is irrational or not. 
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This section even has epigraphs: 

"The modern theory of the infinite evolved in a 
contiguous way out of the mathematics that pre
ceded it." 

-S. Lavine 

"But the uninitiated may wonder how it is possi
ble to deal with a number which cannot be 
counted." 

-B. Russell 

"Buckle your lapbelts please everyone as we are 
about to undergo a steep ascent." 

-E. R. Goris 

For reasons that by now will be familiar, a lot of what fol

lows is going to be really fast. It's also somewhat hard at the 

start, but like a lot of pure math it gets easier the deeper we 
go. As mentioned already, G. F. L. P. Cantor does his gradu
ate work at Berlin under Weierstrass and Kronecker; his ear

liest published articles are fairly standard-issue work in 

certain problems of number theory. 1 Ph.D. in hand, Cantor 

gets a low-rung job as a privatdozent (which seems to be a 
weird sort of freelance T .A. 2) at U. Halle, and there meets one 

E. H. Heine (1821-1881), a specialist in applied analysis 
who'd done important work in Heat, particularly on the 

I m More specifically in indeterminate equations and ternary forms, 
both of which are algebraic number-theory topics that Kronecker's inter

ested in. (Have we mentioned that Kronecker was Cantor's dissertation 
advisor? and that it's SOP for young mathematicians to work on mentors' 
problems-q.v. Cantor also taking over Heine's proof just below?) 

2 m The German academic system of the 1800s is pretty much 
unparsable. 
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Potential Equation.3 Anyway, as of c. 1870 Heine is part of 
the whole big group of mathematicians working on Fourier 
Series and the issues raised by Riemann's "On the Repre
sentability . . .," and apparently he (=Heine) gets Cantor 
interested in what had come to be known as the Uniqueness 
problem: If any given f(x) can be represented by a trigono
metric series, is that representation Unique, i.e. is there only 
one trig series that can do it? Heine himself had been able to 
prove Uniqueness only on the condition that the relevant trig 
series was uniformly convergent.4 Which clearly wasn't good 
enough, since there are plenty of trig series and even Fourier 
Series that aren't uniformly convergent. 

In 1872, Cantor's "On the Extension of a Proposition from 
the Theory of Trigonometric Series"5 defines and proves a far 
more general Uniqueness Theorem that not only doesn't 
require uniform convergence but permits exceptions to con
vergence at an infinity of points, provided that these excep
tional points6 are distributed in a certain specific way. 

3 m = a particular kind of partial differential equation that you might 

remember from sophomore math, probably in the context of Green's Theorem. 
4 which, you might recall from E.G.n's thing on -Uniform Convergence & 

Associated Arcana, means that the f(x) the series represents ( =swns to) must 

be continuous. (M N.B.: Heine's real proof requires that the series and 

function be 'almost everywhere uniformly convergent and continuous, which 

involves distinctions so fine that we can ignore them without distortion.) 
5 lYI i.e., the same paper in which he lays out his theory of real num

bers in §6e (which paper's title will probably now make more sense). 
6 IYI Q.v. E.G.n's-Unifonn Convergence& Associated Arcana item (d) for 

exceptional points, which again please recall can also be called 'discontinu

ities'. (N.B.: Some math classes also use singularity to mean exceptional point, 

which is both confusing and intriguing since the term also refers to Black 

Holes, which in a sense is what discontinuities are.) 
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As we'll see, this precise distribution's rather complicated

as is the '72 Theorem itself, which Cantor has actually devel
oped over several prior papers and published appendices to 
same, as his criteria for Uniqueness gradually evolve from 
requiring the given trig series to converge for all values of x, 
to allowing a finite number of exceptional points, to the 
Uniqueness Theorem's final, 100% general form. What's 
interesting is that it's Professor L. Kronecker who helps 
Cantor refine and simplify his proof at several early points. At 
the same time, Cantor's approach is deeply informed by 

K. W~ierstrass's work on continuity and convergence, e.g. 
the observation that for a general trig series of the form 

f(x) = ~+I( an sin nx + bn cos nx) to be integrable term-by

term (which was the way Heine and everyone else had tried to 
attack the Uniqueness problem), it has to be uniformly con

vergent. Historians have noted that Cantor-Kronecker rela
tions cooled and L. K.'s letters got more and more critical as 
Cantor's refinements of the Uniqueness Theorem began to 
allow infinitely many points at which exceptions to either the 
representation of the given f(x) or the convergence of the series7 

could be allowed. In each successive version of the proof, 
Kronecker was basically watching Cantor move from his own 

algebraic, Constructivist position to a more Weierstrassian, 
function-theoretic one. The apostasy was complete when the 
final 1872 paper came out and its whole first part was devoted 
to the theory of irrationals/reals detailed in §6e. 

Understanding just why it required a coherent theory of 
irrationals is as good a way as any to see how Cantor's work 

7 It is important throughout this section to remember that as far as 

we're concerned these are the same thing. 



Everything and More 231 

on the Uniqueness Theorem led him into studying infinite sets 

per se. The discussion, which gets a bit hairy, requires that you 
recollect the Balzano-Weierstrass Theorem's rule that every 

bounded infinite set of points contains at least one limit 
point-and so of course what a limit point is. 8 Plus you need 

to keep in mind that the Uniqueness proofs central concepts 

are all about the Real Line (i.e., when terms like 'point set' or 
'exceptional point' or 'limit point' are used, they are really 

referring to geometric points that correspond to numbers9
). 

Please note also that the 'bounded infinite sets of points' under 

consideration in both the B.W.T. and Cantor's proof are actu
ally sequences, which are also the easiest entities w/r/t which to 

understand limit points-like for instance the infinite 

f NL . {O 1 3 7 15 31 }10 h · l' · set o .. pomts , 4, S' 16, 32, 64, · · · as as its mut 

point the same i that is the limit of the infinite sequence 

1 3 7 15 31 
o, 4' 8' 16' 32' 64' .. ·. 

So here's how Cantor ·gets his increasingly general result. 
At first (1870), he needs a trig series that isn't uniformly con

vergent11 but is convergent everywhere, meaning convergent 
for all values of x. In the next step (1871) 12

, he is able to prove 

8 M q.v. §Se, p. 188's text and FN 72. 
9 C.f. Cantor, right at the start of "On the Extension ... Series": "To 

every number there corresponds a definite point of the line, whose coordi
nate is equal to that number." 

10 Have we inserted yet anyplace that these strange human-profile 
brackets, '{ },' are what you put around things to show they compose a 
mathematical set? 

11 i.e., that is not integrable term by term. 
12 M Evidently here's where Kronecker was especially helpful. 
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that if two apparently distinct trig series converge to the same 
(arbitrary) function everywhere except a finite number of 
x-points, they are really the same series. We're going to skip 
this proof because what's really germane is the next one, 
which is the 1872 result where Cantor is able to allow an 
infinite number of exceptional points and still prove that the 
two representative trig series are ultimately identical. 13 How 
he does this is by introducing the concept of a derived set, 
whose def. is basically: If Pis a point set (meaning just any set 
of real-number points, though what Cantor obviously has in 
mind is the infinite set of all exceptional points between the 
two trig series), then P's derived set P' is the set of all limit 
points of P. Or rather we should say that P' is the first derived 
set of P, because as long as the relevant point sets are infinite, 
the whole process is, in principle, endlessly iterable-P" is the 
derived set of P', P"' is the derived set of P", and so on, until 
after (n - 1) iterations you'll have P" as the nth derived set of 
P. In the gloss of the Uniqueness Theorem two ,s back, what 
the "provided that these exceptional points are distributed in a 
certain specific way" criterion centers on is this nth derived set 
P", with the vital question being whether P" is infinite or not. 

Some of its real math involves extremely technical stuff 
about how limit points operate, but in essence here's how the 
U.T.'s exceptional-point-distribution thing works. Another 
deep breath would probably not be out of place. 14 Posit an 

13 And clearly, if any series-representation ends up being provably identi

cal to the f(x)'s original representative series, then that original series is the 

function's Unique representation. This is basically how the Uniqueness Theo

rem works--it's not that there's only one series that can represent a given 

function, but rather that all series that do represent it are provably equivalent 
14 M If the following couple 1 s seem brutal, please don't lose heart. The 

truth is that Cantor's route to the theory of oo is a lot harder, mathwise, than 
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infinite point set P such that, for some finite n, P's (n - l}th 
derived set p(n-I) is infinite while its nth derived set P" is 
finite. Then, if two trigonometric series converge to the same 
f(x) except at some or all of the points in P, they are the 
equivalent series; hence Uniqueness is proved. That was 
probably not blindingly vivid and dear. The part it's crucial 
to unpack is the requirement that P" be finite. And to explain 
it, we have to introduce another distinction: any set P for 
which its derived set P" is finite for some finite n is what Can
tor calls a set of the first species; whereas, if P" is not finite for 
any finite value of n, then Pis a set of the second species. (This 
is why the derived-set process was described above as "in 
principle" endless-it's only the second-species sets that 
never produce finite derived sets and so allow a oo of itera
tions of the derived-set-of-derived-set thing.) 

OK then. Here's why, in his proof of the U.T., Cantor 
needs the original infinite set of exceptional points P to be a 
first-species set, and thus P" to be finite. It is because, via 
K. Weierstrass's Extreme Values Theorem, you can prove for 
sure that if any derived set P" is finite, then at some further 
point n + k the derived set p<n +k) is going to take its absolute 
minimum value m, which in this case will be 0, or no limit 
points at all. Meaning, in other words, that anytime in the 
whole P', P", P"', ... P", ... progression you arrive at a 
derived set that's finite, you know that the whole iterative 
process is going to stop somewhere; you're eventually going 
to get to a p<n +kl with no members. And of course we know 

the theory itself. All you really need to get is a rough sense of how the 

Uniqueness Theorem leads Cantor into transfinite math. The brutal part will 
be over quickly. 
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that the members of all these various P's and P"s are limit 
points; and we further know, from the Bolzano-Weierstrass 
Theorem, that any bounded infinite set has at least one limit 
point. If p(n HJ has no members, then the set of which it is the 
derived set has no limit point, and thus by the B.W.T. must 
itself be finite, and thus by the E.V.T. must at some point take 
its own minimum value of 0 members, at which same point 
the set of which that is the derived set becomes finite, and so 
on back down through the p<n+kls and P"s and p(n-Ils and 

P's . . . all of which means--to boil everything way, way 
down-that at some provable point the two representative 
trig series can be shown to collapse into a single series, which 
establishes Uniqueness. 

You'll remember from §§ Se and 6a, though, that in order 
to be 100% workable in all cases the Extreme Values Theorem 
requires a theory of real numbers, and that the Weierstrassian 
version of such a theory was (as Cantor himself showed) a 
clink. This is one reason why Cantor's 1872 proof requires its 
own theory of reals. The other, and related, reason is that in 
order to use the more general Balzano-Weierstrass Theorem 
to construct his theory of derived sets and species, Cantor 
needs to reconcile the geometric properties of points on a 
line's continuum-meaning here concepts like 'limit point,' 
'interval,' etc.-with the arithmetic continuum of real num
bers, since the entities involved in analysis are of course really 
numbers and not points.15 

15 See for instance J. W. Dauben on the '72 proof: "Cantor stressed, 

however, that the numbers in these various [derived-set] domains 

remained entirely independent of this geometric identification, and the 
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If we observe that Cantor's derived sets resemble the gen
eral idea of a subset, and that the minimum value p(n+k) = 0 
is essentially the same as the definition of the empty set, it's 
possible to discern the seeds of what's now known as set 
theory16 in Cantor's Uniqueness proof. Derived sets, the RL./ 
real-number continuum, and the Uniqueness Theorem are 

isomorphism served, really, as an aid in thinking about the numbers them

selves." You'll notice that this attitude is more or less identical to Dedekind's 

in "Continuity and Irrational Numbers". 
16 Preliminary tidying: We need to draw a distinction between two dif

ferent kinds of set theory you might know about. What's called point-set 

theory involves sets whose members are numbers, spatial or R.L.-points, or 

various groups/systems of these. Point-set theory is today a big deal in, 

e.g., function theory and analytic topology. Abstract set theory, on the other 
hand, is so named because the nature and/or members of its sets isn't spec

ified. Meaning it concerns sets of pretty much anything at all; it's totally 

general and nonspecific-hence the 'abstract'. 

From here on out, 'set theory' will refer to abstract set theory unless 

otherwise specified. 
What's complicated is that G. Cantor, whose real fame is as the author 

of abstract set theory, obviously started out in (and basically invented) the 

point-set kind. It's really not until the 1890s that he provides the definition 

of set that now characterizes abstract set theory-"A collection into a 

whole of definite, distinct objects of our intuition or thought, [which] are 

called the members of the set" -but all his significant results in the '70s 

and '80s on point sets also apply to abstract s.t. Plus finally please note, 

anent Cantor's above definition v. the gloss we saw in §6f, that his 'definite' 

means that for some set Sand any object x, it's at least in principle possible 

to determine whether xis a member of S (if you've had much logic, you 

might recall that this feature of formal systems is called Decidability). 
Whereas his definition's 'distinct' means that for any two members x and y 

of S, x .. y, which serves formally to distinguish a set from a sequence, since 

in sequences the same term can show up over and over. Tidying complete. 
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also the progenitors of Cantor's transfinite math, although in 
a rather complex bunch of ways. We've just seen that the 
Uniqueness Theorem's P" requires n to be finite, i.e. that Can
tor uses only finite iterations of the derived-set-of-derived-set 
process for his proof. Since there are already so many infinite 
sets floating around the proof, though {as in: the original Pis 
infinite, and all the P's and P"s and so on up through p<n-I) 

can be infinite, and of course the relevant trig series are infi
nite series, not to mention that limit points involve an infi
nite number of intra-interval points, and that these intervals 
can themselves be infinitesimally small), it shouldn't be sur
prising that Cantor starts to consider more closely the char
acteristics of his derived sets under infinite iterations. 

More specifically, Cantor starts to ask whether the infinity 
of an infinitely iterated second-species derived set p= might 
differ from or somehow exceed the infinity of the finitely iter
ated first-species set p<n-1). More specifically still, he notices 

how closely those questions resemble one about the relative 
oos of the N.L.'s rational numbers versus the R.L.'s real num
bers. This latter question concerns the issue first discussed all 
the way back in §2c-namely that while the rational numbers 
are both infinite and infinitely dense, they are not continuous 
(i.e., the Number Line is shot through with holes), whereas of 
course both Dedekind and Cantor have now proved the con
tinuity of the set of all reals as schematized on the R.L. It thus 
appears natural to Cantor17-who for the U.T. has already 
developed techniques for examining both real v. rational 

17 m It goes without saying that this is aJI very condensed-it's not like 

there was some single epiphanic moment at his desk when these things 
occurred to him. 
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numbers and the properties of infinite sets-to ask whether 
the infinite set of all real numbers is somehow bigger than the 
infinite set of all rational numbers. Except what would 'big
ger' here mean, and ditto for 'exceed' in the above pm v. 
pCn-ll question-that is, how can the comparative sizes of 
different oos be described and explained mathematically? At 
which point, in the immortal words of J. Gleason .... 

ADMINISTRATIVE INTERPOLATION 

There are now a couple procedural issues that need to be 
addressed. Whole scholarly tomes are devoted to Cantor's 
accomplishments.18 You can take a two-term course on set 
theory under the departmental rubrics of Logic, Math, Phi
losophy, or Computer Science19 and still have just scratched 
the veneer. Historically, Cantor's transfinite theories and 
proofs are spread over 20 years20 and scores of different 

18 m First-rate scholarly books in English include A. Abian's The The
ory of Sets and Transfinite Arithmetic, M. Hallett's Cantorian Set Theory 
and Limitation of Size, and J. W. Dauben's Georg Cantor: His Mathematics 
and Philosophy of the Infinite, all of which are listed in the Bibliography. 

The caveat, though, is that 'scholarly' here means pitilessly dense and tech

nical. Dauben's book in particular requires such a strong pure-math back

ground that it's hard to imagine any reader who's able to enjoy it wasting 

her time on the present booklet . . . which renders this whole FN self

nullifying in a sort of interesting way. 
19 M the last usually in connection with the extensional logic of 

G. Boole {1815-1864), whom it's a shame we're not going to talk about. 
20 m It's more nearly accurate to say that the bulk of his original work 

gets done 1874-84, with the subsequent decade's papers being mostly 

expansions and revisions of previous proofs, as well as responses to other 
mathematicians' objections. 
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papers, often with successive refinements and amendments 
to earlier stuff so that there is sometimes more than one ver
sion of the same proof. It's clearly going to be impossible here 
to unpack transfinite math all the way or to do real justice to 
its evolution in Cantor's publications.21 On the other hand, 
there are certain recent pop books that give such shallow and 
reductive accounts of Cantor's proofs (accounts which are, as 
mentioned, usually subordinated to some larger Promethean 
narrative about G. Cantor's psych problems or supposed 
mystical affiliations) that the math is distorted and its beauty 
obscured; and we obviously don't want to do this, either. 

So Command Decision: The compromise henceforth 
will be to sacrifice chronology and a certain developmental 
thoroughness for the sake of conceptual thoroughness and 
cohesion-that is, to present Cantor's concepts, theorems, 
and proofs in a way that highlights their connections to one 
another and to math per se. This will involve not only skip
ping around a bit, but often not telling you that we're skip
ping around, or that there are sometimes several different 
versions of a given proof and we're covering only the best one, 
or what the exact dates and English-v.-German titles of all the 

21 Please note also that as he was inventing the stuff Cantor did not pro
ceed axiomatically; he based most of it on what he called "pictures," or 

rough concepts. Plus, despite the heavy symbolism, most of his actual 
arguments were in natural language---and not exactly crisp clear Russell
caliber language, either. The point being that Cantor's original work is 
quite a bit fuzzier and more complicated than the transfinite math we're 
going to discuss, much of which latter uses axiomatizations and codifica
tions supplied by post-Cantor set theorists like E. Zermelo, A. A. Fraenkel, 

and T. Skolem (not that the names matter much yet in this§). 
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relevant articles are,22 etc. It also entails a special set-theoretic 

EMERGENCY GLOSSARY III, though this E.G. will need to be 
administered gradually and in situ because some of the mater
ial is just too abstract to shove at you up front without context. 

ENDA.I. 

§7b. As should be evident, some very important oo

related ideas come out of the proof of the general U.T. One 
concerns the relative sizes of the set of all rationals v. the set of 
all reals; another is whether the continuity of the Real Line is 
related somehow to the size/composition of the latter set. Yet 
another is the concept of a transfinite number, which Cantor 
derives from the same considerations that led him to distin
guish first- from second-species infinite sets in the '72 proof. 

To see how Cantor conceives and generates his transfinite 
numbers, we need first to make sure we're E.G.-grade clear on 
a few set-theory terms you probably first saw in elementary 
school. 23 To wit: Set A is a subset of set B if and only if there is 
no member of A that is not a member of B. The union of two 
sets A and B is the set of all members of A and all members of 
B, while the intersection of A and B is the set of just those 
members of A that are also members of B. Union and inter
section are normally symbolized by 'U' and 'n,' respectively. 
Lastly, the good old empty set, whose usual symbol is '0,' is a 

22 m although obviously everything is ultimately findable in the 
Cantor publications listed in the Bibliography. 

23 m especially if you're the right age to have been subjected to the 
New Math. 
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set with no members-and be apprised that, by what looks at 
first like merely a quirk of the definition of 'subset,' any set 
whatsoever will always include 0 as a subset. End of first situ
ated chunk of E.G.III. Plus here you have to remember the first
v. second-species thing for point sets from the previous §. 
There's actually also some technical stuff involving criteria 
for 'dense' v. 'everywhere-dense' sets that we're omitting, but 
in essence the way Cantor conceives and generates the trans
finite numbers is this:24 

Assume that Pis a second-species infinite point-set. Cantor 
shows that P's first derived set, P', can be "decomposed"25 or 
broken down into the union of two different subsets, Q and 
R, where Q is the set of all points belonging to first-species 
derived sets of P', and R is the set of all points that are con
tained in every single derived set of P', meaning R is the set of 
just those points that all the derived sets of P' have in com
mon. Why not take a second and read that last sentence over 
again.26 R is the important part, and it's actually how Cantor 
first defines 'intersection' for sets, here via the infinite 
sequence of derived sets P', P", P"', ... (the sequence being 
infinite because P is a second-species set). Unlike our 'n,' 
Cantor's symbol for intersection is a strange ultracursive '~'. 
(Again, we're not going to be doing everything in this much 
detail.) So the official definition of R is: R = ~ ( P', P", P"', ... ), 

24 IYI FN 14's apologies and reassurances pertain to the following 

text 1, too. 
25 M = Cantor's term, which apparently in German doesn't have the 

postmortem connotations it does for us. 
26 m Cantor's proof that P' = Q U R is emetically complex but wholly 

valid; please take it on faith. 
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which, together with the def. of 'second-species set,' means 
that both the following are true: 

(1) R = 'I)(p<2>, p<3l, pt4l, pcsi, ... ) ... 
(2) R = 'I)(p(nl, p(n+l), p(n+2>, p(n+3l, ... )27 

EMBEDDED MINI-INTl!RPOLATJON 

What (1) and (2) together really are is a type of proof, the 
other really famous one besides the reductio. This one's 
called mathematical induction. To prove some statement C,. 
for all (n = oo) cases by math induction, you (a) prove that 
C1 is true for the first case n = 1, then (b) assume that Ck is 
true for the first k cases (you don't know what number k is, 
but from step (a) you know that it exists-if nothing else, 
it's 1), and then (c) prove that Ck+ I is true for the first (k + 1) 
cases. Weird-looking or no, (a)-(c) ensure that C,. will be true 
no matter what n is, that is, that C is a genuine theorem. 

l!NDE.M-1. 

What Cantor's (1) and (2) allow him to do is to define R, as 
taken from P, as: R = P"' -that is, R is the ooth derived set of 
P. And since (again) P is a second-species set, there is no 
chance that P"' = 0, which means that P"' will itself yield the 
derived set p(CD+Il, which latter will yield the derived set 
pt00+2l, and so on, except here 'and so on' means we can keep 
generating infinite derived sets of the abstract form28 

27 m Notice how (l)'s got ellipses outside the right paren, too, meaning 

the sequence continues beyond the finite-superscripted progression. (2)'s 

ellipses are 100% intraparenthetical because n itself is infinite. Make sense? 
28 The following actual notation is of course IYI-but if nothing else it's 

quite pretty. 
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p<n,<Z>' + n,<Z>'-' + + n,,l. And since this formula's 

n and v are variables, Cantor can construct the following 
infinite sequence of infinite sets: p<f'l'2l"'J, p<"'"'+ 1>, p«xi"+">, p<"''""'>, 
p<"'"'">, p<"'00 "'>, .... Of this sequence he says "We see here a 
dialectic generation of concepts, which leads further and fur
ther, and thus remains in itself necessarily and consequently 
free of any arbitrariness" ... by which he means that these 
"'concepts" are real math entities-transfinite numbers
rigorously established by the Bolzano-Weierstrass Theorem, 
G. C.'s own definitions of 'real number' and 'derived set' and 
'intersection,' and mathematical induction. 

If you object (as some of us did to Dr. Goris) that Cantor's 
transfinite numbers aren't really numbers at all but rather 
sets, then be apprised that what, say, 'pCa:i"'+- » really is is a 
symbol for the number of members in a given set, the same 
way '3' is a symbol for the number of members in the set 
{l, 2, 3}. And since the transfinites are provably distinct and 
compose an infinite ordered sequence just like the integers,29 

they really are numbers, symbolizable (for now) by Cantor's 
well-known system of alephs or ~·s.30 And, as true numbers, 

29 m In truth there's a much better analogy for transfinite numbers 

than the integers, viz. some other kind of number that can't actually be 
named or counted but can nevertheless be abstractly generated-by, say, 
drawing the diagonal of the Unit Square, or taking the square root of 5, or 

describing a particular Dedekindian A and B and interstitial schnitt
Regarding all of which please see or await the discussion two text 1 s down. 

10 m That the aleph is a Hebrew letter is sometimes made much of by 
historians wlr/t Cantor's ethnicity or kabbalistic leanings. More plausible 
explanations for Cantor's choice of'tl;' are that (1) he wanted a whole new 

symbol for a whole new kind of number, and/or (2) all the good Greek 
letters were already taken_ 
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transfinites turn out to be susceptible to the same kinds of 
arithmetical relations and operations as regular numbers
although, just as with 0, the rules for these operations are 
very different in the case of ~s and have to be independently 
established and proved. 

(IYI We won't be doing a whole lot with them, but if 
you're curious, here are some of the standard theorems for 
the addition, multiplication, and exponentiation of transfi
nite numbers, all either derived or suggested by Cantor. 
(Please note that sums and/or products of infinitely many 
terms here have nothing to do with the sums/limits of infinite 
series in analysis, which series are now known, post-Cantor, 
as quasi-infinite.) Assume that n is any finite integer, and that 
we've got two distinct transfinite numbers, designated ~0' and 
~1 ,' where ~ 1 > ~0,31 in which case the following are all true: 

( 1) 1 + 2 + 3 + 4 + · · · + n + · · · = ~o 

(2) ~o + n = ~o 
(3) ~o X n = ~o 

(4) ~o + ~o + ~o + · · · = ~o X ~o = (~0)2 = ~o 
(S) ~ 1 + n = ~, + ~o = ~, 

(6) ~Ix n =~I x ~o =~I 

(7) ~I + ~I + ~I + . • • = ~I X ~O = ~I 
(8) ~I X ~I = (~1)2 = (~1)" = (~1to = ~I 

N.B. that subtraction and division are possible only in certain 
misceginated cases-e.g., for a finite n, ~o - n = ~0; ~o = ~0-
not between transfinites per se. (Again, this is not all that dif
ferent from the arithmetic of 0.) Note also that the case of 

31 m re which proofs are on the way in §7c ff. 
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transfinite exponents like 2'\ 2'\ etc. is special and gets dis
cussed at length later on. END m) 

In case you're wondering what any of this has to do with 
the other big co-related issues--namely the comparative 
infinities of the rational numbers v. the real numbers, and 
surds' role in the continuity of the Real Line-be apprised 
that one of Cantor's favorite arguments for transfinite num
bers' reality32 is their mathematical/metaphysical similarity to 
irrationals, which latter Dedekind has already successfully 
defined in terms of infinite sets. How Cantor puts it is: 

The transfinite numbers themselves are in a certain sense 
new irrationals, and in fact I think the best way to define 
the finite irrational numbers is entirely similar[33l; I might 
even say in principle it is the same as my method for intro
ducing transfinite numbers. One can absolutely assert: the 
transfinite numbers stand or fall with the finite irrational 
numbers; they are alike in their most intrinsic nature; for 
the former like these latter are definite, delineated forms or 
modifications of the actual infinite. 

What's interesting is that this clear, unequivocal statement 
appears in the same "Contributions to the Study of the 
Transfinite" where all the way back in §3a we saw Cantor 
quote and credit St. Thomas's objection to infinite numbers 
qua infinite sets. Nevertheless, Cantor's own #1 argument for 
transfinite numbers-an argument repeated in many forms 
from 1874 to the late 1890s-is that "their existence is con
firmed directly by abstraction from the existence of infinite 

32 m mathematically speaking. 
33 He's talking here about Dedekind's schnitt method, which after he 

got going on oo Cantor preferred over his own approach, for rather obvi
ous reasons. 
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sets."34 Thus the central project of Cantor's 1874-84 work is 
to develop a coherent, consistent theory of infinite sets--and 
please notice the plural 'sets,' because for such a theory to be 
nontrivial there needs to be more than one kind (meaning 
mathematical kind, meaning basically size35

) and some set of 
rules for evaluating and comparing them. 

34 Because of space considerations we're not going to harp too much on 

this, but let's emphasize once more here that G. Cantor is, like R. Dedekind, a 

mathematical Platonist; i.e., he believes that both infinite sets and transfinite 

nwnbers really exist, as in metaphysically, and that they are "reflected" in 

actual real-world infinities, although his theory of these latter involve Leibniz

ian monads and is best steered clear of. As it happens, Cantor develops all 
sorts of theological positions and arguments respecting oo, too, some of 

which are cogent and powerful and others merely eccentric. Still, as a mathe

matician and rhetor Cantor is smart enough to argue that one doesn't need 

to accept any particular metaphysical premises in order to admit infinite sets 
or their abstract nwnbers into the domain of legit mathematical concepts. 

See e.g. this passage from Cantor's prenominate "Contributions ... ": 

In particular, in introducing new nwnbers, mathematics is only obliged 

to give definitions of them, by which such a definitenC$ and, circum
stances permitting, such a relation to the older numbers are conferred 

upon them that in given cases they can definitely be distinguished from 

one another. As soon as a nwnber satisfies all these conditions, it can and 

must be regarded as existent and real in mathematics. Here I perceive the 

reason why one has to regard the rational, irrational, and complex num

bers as being just as thoroughly existent as the finite positive integers. 

That last and clearest sentence is a tiny blown kiss to L. Kronecker. The 

rest is obscure enough that J. Dauben gives it the following gloss: "For 

mathematicians, only one test was necessary: once the elements of any 

mathematical theory were seen to be consistent, then they were mathemat· 

ically acceptable. Nothing more was required." 
35 IYI Here the best supporting scholium is from Cantor's follower 

A. A. Fraenkel: "The concept of transfinite magnitude is insignificant so 

long as only one such magnitude was known to exist." 
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§7c. This obviously segues into the question whether the 
Real Line's continuity means that the infinite set of all real 
numbers is somehow > the infinite set of all rational numbers. 

To make a very long story short, Cantor's work on this prob
lem proceeds more or less simultaneously with his develop
ment of the derived-set and transfinite-number stuff. 36 

All right. In trying to find some way to compare the sizes of 
two sets that are both infinitely large, Cantor hits on the very 
concept that's now used in 4th grade to define equality 
between two sets, namely one-to-one correspondence, or 
'1-lC'. (Actually 'hits on' isn't quite right, since we've seen both 
Galileo and Bolzano use one-to-one correspondence to establish 
their respective paradoxes (though after Cantor's theory they'd 
be paradoxes no more).) One-to-one correspondence is, as you 
may already know, the way to establish whether two collec
tions are equal without having to count them. Textbooks use 
all kinds of different scenarios to illustrate how the 1-1 C 

matchup works, e.g. the fingers on your right v. left hands, the 
number of patrons v. available seats in a theater, a restaurant's 
cups v. saucers. Dr. Goris's own chosen trope (which was 
clearly audience-tailored) involved the numbers of boys v. 
girls at a dance and having everybody couple up and dance 
and seeing whether anyone was left standing stricken and 
alone against the wall. You get the idea. A couple formal defi
nitions: There is a one-to-one correspondence between sets A 
and B if and only if there exists a method (which technically 
no one has to know about) of pairing off the members of Aw/ 
the members of B so that each A-member is paired with 

36 m ReaUy more like 'in conjunction' than 'simultaneously,' since the 

two projects end up being connected in all sorts of high-level ways. 
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exactly one B-member and vice versa. Sets A and Bare defined 

as having the same cardinal number (a.k.a. cardinality) if and 
only if there is indeed a 1-1 C between them. 37 

Now, for the next definition please recall how Galileo gen
erated his eponymous Paradox in §ld. It would also be help
ful to remember the formal def. of subset one § back. A set A 
is a proper subset of set B if and only if A is a subset of B and 
there is at least one member of B that is not a member of A.38 

So, by definition, every set is a subset of itself, but no set is a 
proper subset of itself. Make sense? It ought to, at least for 

sets with a finite number of members. 
But what G. Cantor posits as the defining formal property of 

an infinite set is that such a set can be put in a 1-1 C with at least 
one of its proper subsets. Which is to say that an infinite set 
can have the same cardinal number as its proper subset, as in 
Galileo's infinite set of all positive integers and that set's proper 
subset of all perfect squares, which latter is itself an infinite set. 

This feature makes the whole idea of comparing the quote
unquote 'sizes' of infinite sets look very freaky, since by defi
nition an infinite set can have the same size (or cardinality) as 
a set it's by definition bigger than. What Cantor does here39 is 

37 M If you've ever run across references to Cantor's transfinite cardi

nals, this is what they are-the cardinal numbers of infinite sets. 
38 M Galileo's Paradox rests squarely if covertly on this def. See, for 

instance, §Id p. 39's "It's also obvious that while every perfect square 

(viz. 1, 4, 9, 16, 25, ... ) is an integer, not every integer is a perfect square." 
39 M 'Here'= mostly two seminal articles in 1874 and '78, though he 

also spends a lot of time fleshing the idea out in his later, more discursive 

papers. If you'd like the title of the '74 monograph, it's "Ober eine Eigen
schaft des Inbegriffes aller reel/en algebraischen Zahlen." This translates to 

something like "On a Characteristic of the Set of All Real Algebraic Num

bers," regarding which feel free to see FN 53 below. 
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take yet another element of Galileo's Paradox and tum it into 
an extremely powerful and important tool for comparing 
oo-type sets. This, if you want to keep track, is his first stroke 
of incredible, nape-tingling genius, although it may not look 
like much at first. It's the idea of one-to-one correspondence 
with the set of all positive integers, viz. { 1, 2, 3, ... } . The reason 
this is critical is that the set of all positive integers can, in 
principle, be counted40-as in it's possible to go 'Here's the 
first member, 1, and the next member is 2, and ... ,' etc., even 
though as a practical matter the process never ends. Anyway, 
hence Cantor's concept of denumerability: An infinite set A is 
denumerable if and only if there is a 1-1 C between A and the 
set of all positive integers. 41 

The set of all positive integers also establishes a sort of 
baseline cardinal number for infinite sets; it's this set's cardi
nality that Cantor symbolizes w/ his famous '~0'.42 The idea is 
that other infinite sets' cardinalities can be evaluated via this 
baseline cardinal-that is, you can compare them to ~0 by 
seeing whether they can be put in one-to-one correspon
dence with the positive integers. Here's an example (it isn't 
Cantor's per se, but it's a good warmup): 

Consider whether the set C of all positive integers and the 
set D of all integers (incl. 0 and the negatives) have the same 

40 m This is, in point of fact, what counting any collection of n things 

is: it's putting the things in a one-to-one correspondence with the set of 

integers {l, 2, 3, ... , n}. The equivalence of counting and 1-LC-ing-with

lall integers} is what made set theory the basis for teaching little kids arith
metic in the New Math. 

41 m N.B. that in Cantorian set theory denumerable is related to but 

not synonymous with countable. Def.: A set is countable if and only if it is 
either (a) finite or (b) denumerable. 

42 This traditionally gets called either aleph-null or aleph-nought. 
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cardinality. The problem is that there's a crucial difference 
between these two sets: Chas a very first (meaning smallest) 
member, namely 1, whereas D (which is basically the set 
{ ... , - n, ... , 0, ... , n, ... } ) doesn't. And initially it's hard to 
see how we can test two sets for 1-1 C if one of them 
doesn't have a first member. Luckily what we're talking about 
here is cardinality, which has nothing to do with the specific 
order of the sets' members43

; thus we can futz with the order 
of set Din such a way that even though D doesn't have a 
smallest member it does indeed have a first member, here 
let's say 0. And this single bit of futzing lets us set up, and 
represent schematically, a perfect 1-1 C-

C=l 2 3 4 5 

t t t t t 
D = 0 -1 1 -2 2 

neven 

t 
(-1)¥ 

t 
n- 1 ... 

2 

-that proves C and D have the same cardinality. Notice that 

even though you can never literally finish the matching process 
with infinite sets, as long as you can establish a procedure for 
one-to-one correspondence that works for the 1st, nth, and 
( n + 1 )th cases, you have proved by mathematical induction 
that the correspondence will obtain all the way through both 
sets. In the above example, we've proved that the set of all inte
gers is denumerable even though we can't possibly count every 
rnember.44 The proofs method is © G. Cantor, and the big 
thing to see is that he is once again able to take an implicit 
property of something-here math induction's ability to 

43 M Order starts mattering only with Cantor's transfinire ordinals, 

which enter play in §7g. 
44 M Notice that we're starting to be able to answer Ru~ll's epi

graphlc query at the start of §7. 
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abstract a finite number of results over a oo of possible cases
and to make it explicitly, rigorously applicable to infinite sets. 

OK, so now it's dear how Cantor can do a size-comparison 
on the infinite sets of all rational numbers and all real num
bers:45 he can see whether either or both are denumerable. 
What follow are a series of very famous proofs, most worked 
out in correspondence with R. Dedekind, published in the 
1870s, and then revised and expanded in the early '90s. First 
the rationals.46 When you consider the infinite density that 
Zeno had exploited merely in the geometric rationals 
between 0 and 1, it appears as if the set of all rational num
bers can't possibly be denumerable. Not only does it lack a 
smallest member, but there isn't even a next-largest member 
after any given rational (as we've seen two different proofs 
of). What Cantor notices, though, is that by ignoring 'rela
tions of magnitude' between successive members, we can 
actually arrange the set of all rationals in a row, something 
like the row of all positive integers; and in that row there'll be 
a first member r1, a second member r2, and so on. It just so 
happens that the technical term for putting a set into such a 

45 Command Decision: From here on out, when we talk about 'all 
numbers' we're going to deal only with positive values. This includes the 

integers, since after all we've just proved that the set of all integers' cardi

nality = that of the set of all positive integers. Plus it ought to be obvious 
that Cantor's proofs for all positive rationals, all positive reals, etc. will still 
be valid if the relevant infinite sets are doubled to comprise negative val

ues. If you're dubious, then observe that doubling something is the same 

as multiplying it by 2, and that 2 is finite, and that-by transfinite theo

rems (3) and (6) in §7lr--any ~times a finite n will still = ~. 
46 IYI Again, please be advised that we're doing these proofS in the order 

that yields the dearest and most logical exposition. N.B. also that there are 
also some cardinals-v.-ordinals distinctions that for now we're going to fudge. 
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row is giving a denumeration of the set-plus the row itself 

is called the set's denumeratio~meaning that here the valid 
construction of an ordered row will constitute a proof that the 

set of all rationals really is denumerable (that is, 1-1 C-able 

with, and so equivalent in cardinality to, the set of all inte
gers). Cantor's construction, which is sometimes referred to 

incorrectly as his 'Diagonal Proof,'47 runs more or less thus: 

As we saw in §6c, all rational numbers can be put in the 

ratio-of-integers form~- So we make a 20 array of all these~' 

where the top horizontal row is all the rationals of the form t 
(i.e., the integers), and the first vertical column is all the ratio-

nals of the form ~· and every rational ~ will be located in the 
qth row and pth column, like so: 

1 2 3 4 5 6 7 
p 
1 

1 2 3 4 5 6 7 p 
2 2 2 2 2 2 2 2 
1 2 3 4 5 6 7 p 
3 3 3 3 3 3 3 3 
1 2 3 4 5 6 7 p 
4 4 4 4 4 4 4 4 
1 2 3 4 5 6 7 p 
5 5 5 5 5 5 5 5 
1 2 3 4 5 6 7 p 
6 6 6 6 6 6 6 6 
1 2 3 4 5 6 7 p 
7 7 7 7 7 7 7 7 

1 2 3 4 5 6 7 p 
q q q q q q q q 

47 m What Cantor really calls 'Diagonalization' is his method for prov-

ing the nondenumerability of the reals, which as we'll see is quite different. 
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Granted, a 2D array is not the same as the single ordered 
sequence/row of true denumeration, but Cantor figures out 
how to sequence the array's rationals via a single continuous 
zigzaggy line, like so: start at 1 and go due east one place to 2, 

then diagonally southwest to ~' then due south to ~· then 
diagonally northeast to the first row again and 3, then east to 

4, then southwest all the way to ~· south to ~' northeast to 5, 
and so on, as in: 

I 
q 

2 
q 

3 
7 

3 
q 

4 
7 

4 
q 

s-6 

5 
5 
5 
6 

5 
7 

5 
q 

6 
3 
6 
4 

6 
5 
6 
6 

6 
7 

6 
q 

7- ... 

7 
2 

7 
3 
7 
4 

7 
5 
7 
6 

7 
7 

7 
q 

p 
I 
p 
2 

p 
3 
p 
4 

p 
5 
p 
6 

p 
7 

p 
q 

The points on the above line will compose the sequence 1, 2, 

I I 2 3 2 I I 2 3 4 5 4 3 2 I 1 2 
2'3'2' 3'

4'2'3'4'5'4'3'2' 5' 6'2'3'4'5'6'7'6'···•from 
which we can licitly cancel out all the ratios in which p and q 
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have a common factor, so each different rational appears just 

once in its most basic form. This process of elimination/ 

reduction then yields the linear sequence 1, 2, !· ~' 3, 4, ~· ~· 
11 543211 p . . 
4' S' 5, 6, 2' 3' 4' S' 6' 7' ... , q• ... , whICh sequence const.t-

tutes the ordered row required for denumeration,48 meaning 
that the set of all rationals is indeed denumerable and there
fore has the same cardinality as the set of integers, namely 

good old~o-
The true Diagonal Proof appears in Cantor's answer to the 

question whether the set of all real numbers is > the set of all 
rationals. It should now be obvious that Cantor's proof here 
will concern the denumerability of the real numbers; i.e., if 

the reals are denumerable then their cardinality = that of the 
rationals, and if they're not then the reals are > the rationals. 
The overall proof is a reductio, and its method of Diagonal
ization is now regarded as one of the most important proof
techniques in all of number theory. Two preliminary things 
to note here. (1) Cantor's first, Dedekind-informed, '73-'74 
proof of the nondenumerability of the reals involves limits of 
sequences w/r/t 'nested intervals' on the Real Line and is just 
hideously complex. The proofs we're doing here are Cantor's 
revised versions, c. 1890; they are both simpler and more 
significant than the early one. (2) Notice once again in the 
following how Cantor uses the decimal form of real num
bers and exploits §2c's fact that .999 ... = 1.0 in order to 

~ M If this schematic def. seems to you insufficient and you want an 
actual 1- l C between the sets of rationals and integers, then simply take the 
prenominate ordered row and match its first member with l, its second 

member with 2, ... and so on and so forth. 
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represent not just the irrationals but all real numbers as non
terminating decimals-as in for example 0.5 = 0.4999 . . ., 
13.l = 13.0999, etc. This move (which was actually Dedekind's 
suggestion) ensures that there's only one licit representation 
of each decimal; we'll see in a minute why Cantor needs to set 
the real numbers up this way. 

So here's the proof. Because it's a reductio, we first assume 
that the set of all real numbers truly is denumerable-i.e., that 
it is listable in an ordered row or sequence.49 This sequence 
will consist in an infinite table of infinite nonterminating dec
imals, which table we can show at least the start of, like so: 

1st Real# = X1 .a1 a;za3a4astJi;~ .. . 
2nd Real#= X2.b1b2b3b4b5h6"7 .. . 
3rd Real# = X3.C1CiC3C4Cs'60 ••• 

4th Real # = X4.d1 did3d4ds'4"7 ... 
5th Real# = X5.e, eie3e4esfti~ .•. 

6th Real# = ~.fififddsk.h · · · 

And so on .... 

In this table, the X's denote any and all pre-decimal-point 
integers, and a's, h's, etc. represent the infinite sequences of 
digits after the decimal points; and the proof's assumption is 

49 M You may well be able to anticipate some familiar complications 

here w/r/t what can possibly be the sequence's very first real number, and 

to see why none of the previous kinds of fiddling with the row-orders will 
work with the real numbers. In which case, for your own peace of mind, be 

now advised that Prof. E. Zermelo's famous set-theoretic Axiom of Choice 

(which is its own briarthicket-see §7f) ensures that we can always con

struct an ordered set of real numbers in such a way that it's got a bona fide 

first member. It would be in your interest to just swallow this for now. 
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that the infinite version of such a table will be exhaustive of 
all the real numbers. This means that the reductio's desired 
contradiction will require us to prove that such a table does 
not really exhaust the set of all reals, which proof requires 
that we come up with a real number that isn't-can't be
included in the table. 

What Cantor's Diagonal Proof does is generate just such a 
number, which let's call R. The proof is both ingenious and 
beautiful-a total confirmation of art's compresence in pure 
math. First, have another look at the above table. We can let 
the integral value of R be whatever Xwe want; it doesn't mat
ter. But now look at the table's very first row. We're going 
to make sure R's first post-decimal digit, a, is a different 
number from the table's a1• It's easy to do this even though 
we don't know what particular number a1 is: let's specify that 
a= (a1 - 1) unless a1 happens to be 0, in which case a= 9. 
Now look at the table's second row, because we're going to 
do the same thing for R's second digit b: b = (b2 - 1), or 
b = 9 if b2 = 0. This is how it works. We use the same proce
dure for R's third digit c and the table's c3, ford and d4, fore 
and es. and so on, ad inf. Even though we can't really construct 
the whole R (just as we can't really finish the whole infinite 
table), we can still see that this real number R = X.abcdefghi ... 
is going to be demonstrably different from every real number 
in the table. It will differ from the table's 1st Real in its first 
post-decimal digit, from the 2nd Real in its second digit, 
from the 3rd Real in its third digit, ... and will, given the 
Diagonal Method here,50 differ from the table's Nth Real in 

50 So the reason for the 'Diagonal' thing is the first-digit-in-first-row, 
second-digit-in-second-row, 45°-angle construction of R. 
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its nth digit. Ergo R is not-cannot be-included in the above 
infinite table; ergo the infinite table is not exhaustive of all 
the real numbers; ergo (by the rules of reductio) the initial 
assumption is contradicted and the set of all real numbers is 
not denumerable, i.e. it's not I-IC-able with the set of inte
gers. And since the set of all rational numbers is I - IC-able 
with the integers, the set of all reals' cardinality has got to be 
greater than the set of all rationals' cardinality. Q.E.D.* 

•QUICK FOREST-V.-TREE INTERPOLATION 

Let's step back and reflect for just a second here on how 
stratospherically abstract all this is. And on why set theory, 
which is arguably the most fundamental part of modern 
math, is also the most mindbending. Set theory is I 00% 
trivial as long as you're dealing with finite sets, because all 
relations between such sets can be determined empirically
you just count up their members. In real set theory, we're 
dealing with abstract aggregates of abstract entities so numer
ous they cannot ever be counted or completed or even com
prehended ... and yet we are proving, deductively and thus 
definitively, truths about the makeup and relations of such 
things. In the heat of all this proof and explication, it's easy to 
lose sight of the utter strangeness of infinite sets, a strange
ness which is diminished not one bit by Cantor and 
Dedekind's having shown that these oos lie at the very taproot 
of math and are required for handling something as basic as a 
straight line. Apropos this strangeness, here is a nice quota
tion from philosophers P. Benacerraf and H. Putnam: 

There are the sets; beautiful, imperishable, multitudinous, 
intricately connected. They toil not, neither do they spin. 
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Nor, and this is the rub, do they interact with us in any 
way. So how are we supposed to have epistemological 
access to them? To answer, 'by intuition,' is hardly satis
factory. We need some account of how we can have 
knowledge of these beasties. 

-and one from the hardass Intuitionist H. Poincare: 

A reality completely independent of the spirit that con
ceives it, sees it, or feels it, is an impossibility. A world so 
external as that, even if it existed, would be forever inac
cessible to us. 

257 

-and a rather delicious rebuttal from the Platonist K. Godel: 

Despite their remoteness from sense experience, we do 
have something like a perception also of the objects 
of set theory, as is seen from the fact that the axioms 
force themselves upon us as being true. I don't see any rea
son why we should have less confidence in this kind of 
perception, i.e. in mathematical intuition, than in sense 
perception, which induces us to build up physical theories 
and to expect that future sense perceptions will agree with 
them .... 

ENDQ.F.-V.-T.I. RETURNT0§7cATTHE1 ONp.256 

WI ASTERISK AT END 

Some addenda regarding these first two proofs. { 1) Since 
the cardinal number of denumerable sets is M0, it looks as if it 
would make sense to signify the set of all reals' cardinality by 
~i'; but for complicated reasons Cantor designates this set's 
cardinal number c, which he also calls "the power of the Con
tinuum," since it turns out to be the nondenumerability of 
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the reals that accounts for the continuity of the Real Line. 
What this means is that the oo of points involved in continu
ity is greater than the oo of points comprised by any kind of 
discrete sequence, even an infinitely dense one. (2) Via his 
Diagonal Proof that c > ~0, Cantor has succeeded in charac
terizing arithmetical continuity entirely in terms of order, 
sets, denumerability, etc. That is, he has characterized it 
100% abstractly, without reference to time, motion, streets, 
noses, pies, or any other feature of the physical world-which 
is why Russell credits him with 'definitively solving' the 
deep problems behind the Dichotomy.51 (3) The D.P. also 
explains, with respect to Dr. G.'s demonstration back in §2e, 
why there will always be more real numbers than red hankies. 
And it helps us understand why rational numbers ultimately 
take up 0 space on the Real Line,52 since it's obviously the 
irrational numbers that make the set of all reals nondenu
merable. ( 4) An extension of Cantor's proof helps confirm 
J. Liouville's 1851 proof that there are an infinite number of 
transcendental irrationals in any interval on the Real Line. 
(This is pretty interesting. You'll recall from §3a FN 15 that 
of the two types of irrationals, transcendentals are the 
ones like ir and e that can't be the roots of integer-coefficient 
polynomials. Cantor's proof that the reals' oo outweighs the 
rationals' oo can be modified to show that it's actually the 
transcendental irrationals that are nondenumerable and 

51 M Q.v. the beginning of §Se. 
52 M The proof of this weird factoid, which was way back on §2e's 

pp. 89-90, can of course now be freed from the requirement that all the 

hankies and half-hankies and half-half-hankies be infinitesimally small
we merely invoke §Se(l)'s Weierstrassian proof that Lim(--\)= 0. 

n-+cr. 2 
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that the set of all algebraic irrationals has the same cardinality 
as the rationals,53 which establishes that it's ultimately the 
transcendental-irrational-reals that account for the R.L.'s 
continuity.) (5) Given that the D.P. is a reductio proof and 
that its quantities are in no way constructible, it should come 
as no surprise that Prof. L. Kronecker and other proto
Constructivists didn't like it at all (re which there's much 
more a couple §s down). By all accounts, Kronecker's public 
campaign against Cantor commenced in earnest with the 
c-related papers. 

§7d. Mathematically, you can probably see what Can
tor's next big move is. Having proved with c that there is a 
power of oo greater than ~0, he starts looking for infinite sets 
whose cardinality might be greater than c. His next major 
proof (which you'll notice still concerns point sets) is an 
attempt to show that the 2D plane contains a oo of points 
that's greater than the ID Real Line's c in the same way that c 

is greater than the Number Line's ~0• This is the proof of 
whose final result Cantor famously wrote to Dedekind "Je le 
vois, mais je'n le crois pas" in 1877.54 It's known in English as 
his Dimension Proof. The general idea is to show that the real 
numbers cannot be put into a 1-lC with the set of points in 

53 IY1 Historically speaking. the earliest nondenumerability result Cantor 

could actually prove was that the set of all transcendentals was nondenu

merable and that the total set of all rationals + all algebraic irrationals had 
the same cardinality as the rationals. Q.v. here FN 39 supra and the title of 

Cantor's '74 paper, which should now make more sense. 
54 IY1 = "I see it, but I don't believe it" (which is a pithy if uninten

tional bit of anti-empiricism). Just why he says this in French to a fellow 
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an n-dimensional space, here a plane, and hence that the car
dinality of the plane's point set is > the cardinality of the set 
of all reals. The proofs specific cases are the good old 
Pythagorean Unit Square and the interval [0,1] on the Real 
Line. (You will remember from §3 that Balzano' s P. of the I. 
had already suggested in 1850 that [ 0, 1] contained as many 
points as the whole Real Line, which equivalence Cantor now 
formally proves in his Dimension paper. Since we've already 
seen a graphical demonstration of the equivalence in §3c, 
we'll skip this proof except to point out what you can likely 
anticipate: Cantor shows that whatever type of Diagonaliza
tion you use to create a new real number that's > 1 can be 
duplicated to create a new real number in [0,1].) 

For the paper's main Dimension Proof, you sort of have to 
visualize the Unit Square set up like a Cartesian grid, with 
numerical coordinates corresponding to each and every point 
on its plane. Cantor's strategy is to use Diagonalization to 
show that there are numbers corresponding to these 2D 
coordinates that cannot be found in the set of all reals. As is 
clear from his letters to Dedekind, Cantor is sure at the outset 
that such numbers can be generated, since every geometer 
from Riemann on had operated under the assumption that 
any space's dimension (as in ID, 2D, 30) was uniquely deter
mined by the number of coordinates required to identify a 
point in that space. 

Except that assumption turns out to be wrong, as Cantor 
discovers in his attempt to construct decimal sequences of2D 

Gennan isn't dear-it seems to have been a way to emphasize emotion. 

Cantor's scholarly German, too, often switches into French or Greek for no 

discernible reason. Perhaps this was SOP. 
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coordinates that will allow planar points to be compared with 
real-number decimals. The tricky thing is obviously that pla
nar points are specified by pairs of real numbers and linear 
points by solo reals, so (harking back to Pythagoras and 
Eudoxus) Cantor has to devise a way to make the two sets of 
points commensurable. It takes him three years to figure out 
how to do this. Again, let all relevant numbers be represented 
by infinite nonterminating decimals. Take any point (x, y) on 

the Unit Square; these coordinates are writable: 

x = 0.a1 a2a3a4as~a7 • •• 

y = O.b1b1b3b4b5b6Ery ••. 

which combine to make up the point (x, y)'s unique55 deci
mal representation: 

0.a1 b1 a2b2a3b3a4b4asb5~b6a,lry . .. 

And to this point there will dearly correspond a unique point 

z in the R.L. interval [O,l], namely the z that equals the real 
number O.a1 b1 a2b2a3b3a4 b4a5b5~b6a7 b7 •• •• 

56 

55 This wtlqueness is critical. You can't allow two different decimal ways 

to represent the same point, because the whole idea is to see whether to each 

particular point in the U. Square there corresponds a particular point in the 

R.L's [O,l ]. It should now be 100% dear why Cantor needs to stipulate that 

numbers like ~ are to be designated· only by .4999 ... and so on. If you 

remember the mention of this stipulation in §7 c, be now apprised that it was 

this Dimension Proof w/r/t which Dedekind suggested it to Cantor, pointing 

out the "unique mapping" (which was D. & C's original term for 1-lC, in 

letters) would be screwed up if both .4999 ... and .5000 ... were allowed. 
56 INTERPOLATION THAT IS so m rr's NOT EVEN IN THE MAIN TEXT Techni

cally it's a little more complicated than that. But not a lot. Cantor's original 

Dimension Proof is sort of unnecessarily recondite. It involves defining 
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So, by straightforward extrapolation from the Unit Square 

and [ 0, l], every point on a 2D plane can be put into a 1-1 C with 
a point on the R.L. in just this way, and vice versa. More, Can

tor's (relatively) simple method of combining coordinates 

the decimal representation of point (x, y) as the convergent series j31 1~ + 

A _I_ + A _I_ + ... + a - 1- + · · · and then "pulling the terms of [this 
'"'2 HY t'l 103 .... IO" , 

series] apart" in such a way as to form for each member a sequence of "p 

independent variables" in [0,1], these latter designated a 1, a 2, a 3, a 4, ••• , 

aP. The "pulling apart" and subsequent mapping (as well as the reverse, so 

that the a~j3 correspondence works both ways) is accomplished via four 

equations, of which the first looks like: 'a1 •• = 13(n-I)p+i'· Which may not 

make the 1-1 C here terribly obvious. The real proofs rub (as explained in 

1979 by the redoubtable Dr. G.) is that the 'a1tiiilJ/b1b2b3' description of the 

planar coordinates (x, y) we gave above is a bit too simple in that it makes it 

look like a and bare individual digits. What Cantor's technique really does 

is break x and yup into little chunks of post-decimal digits; the rule is that 

each chunk terminates at the very first nonzero digit you hit (which is 

another, more technical reason why Cantor can't have integers and ratio-

nals ending in .0000 .... ) So say for example that x = 0.020093089 ... and 

that y = 0.702064101 ... , in which case they get broken down into: 

x = 0.02 009 3 08 9 .. . 

y = 0. 7 02 06 4 I 01 .. . 

It's these chunks that get combined tit for tat to compose point (x, y)'s 

unique decimal representation: (x, y) = 0.02 7 009 02 3 06 08 4 .... And 

here the extra spaces are just illustrative aids; the actual decimal rep. of 

(x, y) is 0.02700902306084 .... This is, of course, also a real number, 

namely the [O,l] point z that equals 0.02700902306084 .... And what's 

ingenious about the chunks-of-digits device is that if there's a z' that differs 

from z by even one digit lying n places out past the decimal (which of 

course there will be-a co of such z's, in fact), then the relevant (x, y) will 

also be different in the chunk comprising that nth digit, so the relevant cor

respondence is biunique., meaning for each z there's a unique (x, y) and vice 

versa, which means it's a genuine l • l C. 
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into a single real number means that the same general tech
nique can be used to show that a 3D cube, a 4D hypercube, or 
actually any n-dimensional figure's total point-set has the 
same cardinality as the R.L.'s set of real numbers, namely c. 

This is an extraordinary result, and it's why Cantor wasn't 
disappointed at having failed to prove his original premise: 
he'd discovered an incredible depth and richness to the Con
tinuum, and his proof showed (this is him writing to 
Dedekind) "what wonderful power there is in the real num
bers, since one is in a position to determine uniquely, with a 
single coordinate, the elements of an n-dimensional continu
ous space." 

Cantor's discovery that lines, planes, cubes, and poly
topes57 were all equivalent as sets of points goes a long way 
toward explaining why set theory was such a revolutionary 
development for math-revolutionary in theory and practice 
both. Some of this goes all the way back to the Greeks' com
mensurability problem and classical calc's ambivalent rela
tionship to geometry. Uneasiness about using quantities like 
x2 and x3 in the same equation (since squares entailed 2D 
areas and cubes---+ 3D volumes) had persisted for centuries, 
and the 1800s' emphasis on rigor made the geometric ambigui
ties even less palatable. To make a long story short, Cantorian 
set theory helps unify and clarify math in the sense that all 
mathematical entities can now be understood as fundamentally 
the same kind of thing-a set. Plus, in the new non-Euclidean 
geometries,58 Cantor's finding that all geometric-point-sets are 

57 m (inserted at editor's insistence) = the prurient term for polyhe

dra in 4+ dimensions. 
58 m as mentioned in §§ Sb and Sd. (And in the latter §, Riemannian 

geometry's use of oo and oo-related points was at least touched on.) 
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transfinitely equivalent (i.e., that they all had the cardinality c) 

is of major importance, particularly in the idea of dimension, 
as Cantor also observes to Dedekind: 

This [ =G.C.'s] view seems opposed to that generally pre
vailing in particular among the advocates of the new geom
etry, since they speak of simply infinite, two, three, . . ., 
n-dimensional infinite domains. Sometimes one will even 
find the idea that the infinity of points of a [2D] surface 
may be produced so to speak by squaring, that of a solid by 
cubing the infinity of points of a line. 

It goes without saying, though, that our 'revolutionary 
development' and 'major importance' stuff is in hindsight. As 

has been abundantly foreshadowed, it's not the case that 
mainstream math immediately dropped to one knee with 
arms out to welcome Cantor's post-Uniqueness Theorem 
proofs. Particularly re the Dimension Proof, mathematicians 
of nearly all stripe and school lined up to revile it. Besides the 
general objections in §7c, Constructivists especially hated 
the idea of somehow creating ID irrationals out of 2D com
binations of other irrationals, as well as the 'noncontinuous 
mapping' the Dimension Proof produced between line
points and plane-points59

; and it was actually Cantor's 

59 This gets into a pretty specialized area of function theory, but in 

essence noncontinuous mapping means that if you travel continuously 
along the points in [O,l] on the R.L., the corresponding points on the Unit 

Square won't form a continuous curve but will be spread out patternlessly 
all over the place. (IYI With respect to the second 1 of §7d above, it turns 
out that Riemann et al.'s assumption was wrong in an interesting way: 

the dimension of a given set of points depends not only on how many 
coordinates per point there are, nor even on the cardinality of the total 
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Dimension-Proof paper60 that L. Kronecker first intrigued to 
get rejected from a journal he was on the editorial board of, 
over which Cantor spent a great many letters venting spleen. 
But it wasn't just Constructivists or fundamentalists. See, for 
just one example, these lines from P. Du Bois-Reymond
who is not a Kroneckerian but a mainstream analyst in the 
Aristotle-Gauss tradition of potential-only oos-in a review 
of the Dimension Proof: 

It seems utterly repugnant to common sense. The simple 
fact is that this is the outcome of a type of reasoning that 
allows Idealistic [=Platonic] fictions to assume the role of 
genuine quantities even though they are not even truly 
limits of representations of quantities.61 

§7e. Anyway, so we've established at least and maybe at 
most two distinct orders of infinite sets, ~0 and c,62 and it's 

point-set, but also on the particular way the points are distributed. This lat

ter is an issue in point-set topology, regarding which all we're in a position to 

say in this booklet is that it is yet another branch of math that wouldn't exist 

without Cantor's work on oo.) 
60 IYI date= 1878; title= "Ein Beitrag zur Mannigfaltigkeitslehre," or 

roughly" A Contribution to the Theory of Manifolds/ Aggregates/Sets." 
61 IYI It's probably obvious that D. B.-R.'s specific "fictions" here are 

the composite decimal reps. for (x, y); but in the context of the whole 

review he's also talking about the infinite sets of R.L.- and U.S.-points the 

decimals are mapping. (N.B. that exactly the same charge could have been 
leveled against Dedekind's schnitt theory's A and B-for some reason 

Dedekind never drew the same kind of fire Cantor did.) 
62 Cantor often refers to these as the first number class and second num

ber cltiss, respectively. 
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now appropriate to ask what exactly these cardinal numbers 
have to do with the transfinite numbers that we saw Cantor 
manufacture out of R and :.D and the derived-sets-of
derived-sets thing in §7b. With the big specific question 
being whether the infinite sequence of infinite sets p<n""=), 
p<""=+I)' p<""=+•i, etc. can be shown to correspond to an infinite 

hierarchy of greater and greater cardinal numbers, or whether 
~o and care the only infinite cardinals and there are no real oos 
beyond the transdimensional power of the Continuum. 

Cantor's next big discovery is that you can validly con
struct an infinite sequence of infinite sets with larger and 
larger cardinal numbers using nothing but the formal prop
erties of sets. 63 These properties involve the concepts of the 
subset and of the Power Set, the second of which is hereby 
defined, for some set A, as simply the set of all subsets of A. 

Meaning every member of P(A) is some subset of A. This 
turns out to be heavier than it looks. Every set, finite or not, 
has a Power Set64

; but what Cantor's able to prove is that even 
if set A is infinite, its Power Set P(A) will always have a larger 
cardinal number than A-more specifically, he's able to 
prove that the cardinal number of P(A) will always equal 2A. 65 

63 m Textbooks often state this as an abstract theorem, like 'Given any 
infinite set S, it is possible to construct another infinite set S' with a greater 

cardinal number'. 
64 M This principle is known in set theory as the Power Set Axiom. One 

reason it's an Axiom is that it drops right out of the definitions of 'subset' 
and 'empty set,' as will be evident just below in the main text. There are 
problems with the P.S.A., though-q.v. the interpolative §7fbelow. 

65 IYI Technically, this ought to be written 'P(A) = 2il:,' where 'A' 
stands for the cardinal number of A. Having stated this for the record, 
we'll just write it informally from now on. 
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And this A~ 2A thing ends up being crucial for navigating the 
transfinite, in which realm it turns out that one sort of jumps, 
quantwnlike, from one number class to the next, with nothing 
in between: i\ = ~1 , 2M• = ~2, and so on (as it were). 

Cantor's Power Set proofs are extremely intricate, and we 
have to kind of build up to them. And 4th grade was doubt
less a long time ago for everybody, so in case we haven't 
already done so let's explicitize that the formal way to desig
nate a set is to put its members inside {braces} like this, and 
that the symbolism for 'item a is a member of set A' is 'a E A'. 

Let's further remind you that 'subset' is by definition more 
inclusive than 'proper subset,' and that included among the 
subsets of any set A will be (1) A itself and (2) the empty set, 
symbolized '0' or sometimes ' { } '. 66 Since any set, therefore, 
has at least some subsets, it follows that every set has a Power 
Set. To see informally that the number of members of A's 
Power Set always equals itNumber of Members of A), let A be 

the three-member set {l, 2, 3}. A's subsets here are: { }, {1}, {2}, 
{3}, {I, 2}, {1, 3}, {2, 3}, {I, 2, 3}, of which there are exactly 8, 
or 23

• A more rigorous way to prove P(A) = 2A is by mathe
matical induction, which technically isn't the way Cantor 
does it but is at least implicit in Cantor's proof; plus it's com
paratively easy. Please review or resummon §7b's thing on 
the three steps of proof by math induction, which here will 
go like: 

(a) Prove that the cardinality of P(A) equals 2A for a set 
A with just one member. Such an A has as subsets the 
following: 0 and A itself, which means its P(A) has two 

66 IYI Again, technically it would be better to say that '0' is the symbol 

for ( }, which latter is the empty set ... but you get the idea. 
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members, which is 21 members, which is 2A members, so 
bingo.67 (b) Assume it's true that if A has k members, P(A)'s 

cardinal number= 2k. (c) Prove that if A has (k + 1) mem
bers, P(A) = 2<k + 0 . From step (b) we know that A's first k 
members yield 2 k subsets of A. We now take each one of these 
zk subsets and form a brand new subset that also contains the 
very last of A's (k + 1) members (i.e., the new, extra member 
designated by the'+ 1 ').We can form exactly 2k of these new 
'+ 1' subsets-one for each of the original subsets. So now 
we've got the original zk subsets that don't contain the new 
'+ 1' member, and we've got 2k new subsets that do contain it. 
That's (2k + 2k) subsets, which is equivalent to (2 x 2k) sub
sets, which equals z<Htl subsets. So (c) is also proven. So sure 
enough, P(A) = 2A. 

For our purposes, Cantor's got two main Power Set 
proofs. In neither one is he worried about the zA thing yet: 
what he's basically concerned to show is that even for an infi
nite set A, P(A) > A.68 The first version, which dates around 
1891, is important mainly because it shows what a potent 
reductio-weapon the Diagonalization technique is. It can be 
considered a proof that the set of all subsets of the set of 
integers is not denumerable69-which, since Cantor's already 

67 IYI You can prove P(A) = 2A for the empty set too. If A = 0, it has 0 

members. It does, however, have a subset-viz. 0, since the empty set is a 

subset of every set. So here P(A) = 1, which is 2°. 
68 This will make sense if you remember that the overall context of these 

proofs is Cantor's attempt to derive infinite sets (a.k.a. number classes) 

whose cardinality exceeds c. 
69 IYI In point of fact, 189l's is really a proof that this Power Set is 

uncountable. But recall that a set's being countable requires its being either 

finite or denumerable, and it's easy to show that the relevant set here isn't 
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shown that the set of integers is denumerable, will obviously 
mean that its Power Set has a higher cardinal number than ~0• 

Here's the proof. Call the set of all integers I; call I's Power 
Set P(I). We know from §7c that in order for P(I) to be 
denumerable, it has to be possible to set up a one-to-one cor
respondence between P(I) and I. The present proof is a 
reductio, so assume that verily such a 1-lC between P(I) and 
I is possible. This (as we also know from §7c's Diagonal 
Proofs) means that the 1-1 C can be charted in an array like 
the following partial example, with the members of I on the 
left and the subsets of I (which are also the members of P(I), 
and can be in any sort of random order we want) on the right: 

ARRAY#! 
I p (I) 

0 ~{All Integers} 
1 ~ { } 

2 ~{All Even Integers} 
3 ~{All Odd Integers} 
4 ~ {All Primes} 
5 ~{All Integers> 3} 
6 ~{All Perfect Squares} 
7 ~{All Perfect Cubes} 

·~· 
·~· 
·~· 

finite. Since the set of all integers { l, 2, 3, 4, 5, ... } is itself infinite, we have 

only to take each individual member, put braces around it, and realize that 

{I}, {2}, {3], etc. are each subsets of the set of all integers. So there's no way 

the set of all such subsets can be finite. So the real issue is whether the 

Power's Set's denumerable. 
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As it happens, we can tweak this array's informative range by 

exploiting a property of its 1-1 C that you might already have 
noticed if you've spent any time thinking about why exactly 

the relation between sets and their Power Sets is always 2A 

rather than 3A or some other xA. The deep answer is that the 

'2' in 2A reflects a particular kind of decision procedure. For 

each subset s of some set A, you have exactly two choices with 
respect to each member a of A; either a is a member of s, or it 

isn't. That last sentence probably requires more than one 
read. It's hard to put it clearly in natural language, but the 

idea itself isn't that complicated. A is a set, a is some parti

cular member of A, s is some particular subset of A. Ask 
whether a happens to be a member of s. Well, either it is 

or it isn't. You exhaust all the possibilities regarding a's 
membership in s by including a in s once and excluding a 
from s once-thereby producing the duo of subsets s and s' 
w/r/t each a. 

(SEMI-m Here's one of those places where it's simply 
impossible to tell whether or not what's just been said will 
make sense to a general reader. If the abstract is-a-a-member

of-s-or-not thing is clear enough so that you understand why 
it alone explains why a set A with three members will have 23 

subsets, feel free to skip the rest of this 1. If it isn't, we'll do a 
concrete example. Let's say A is the same set {1, 2, 3} 

unpacked on p. 267, where we listed A's subsets: { }, {l}, 
{2}, {3}, {l, 2}, {l, 3}, {2, 3}, {l, 2, 3}. Take a look at those 

subsets and see how many times any particular member of 

A-let's say the member 1-is included in the eight total sub
sets. You'll notice it's included in four of the subsets and 

excluded from four. If you look at A's member 2, you'll see 



Everything and More 271 

it's the same thing: 2 is present in four and absent from four. 
Same with 3. Can you see why? There are eight total subsets; 
half of them contain any particular member of A, and half of 
them don't. You can actually construct the set of all A's sub
sets this way. Take any member of A. If your first subset s 
doesn't contain the member, your next one s' will. Or 
obversely. That is, for any particular member and subset, 
there are two choices, and the set of all subsets will comprise 
them both. Two choices for each member. Hence the number 
of subsets of { 1, 2, 3} will be 2 X 2 X 2, or 23

• If this still fails 
to make the basic idea clear, you're asked to please just eat it 
(the idea) because this is the best we can do.) 

OK, so this means that we can take Array #1 and sort 
of expand it sideways by asking, for every integer in set I, 
whether it really is part of its corresponding subset in the 
P(I) column, and entering 'Yes' if the integer is in that par
ticular subset and 'No' if it isn't. As in: 

ARRAY#2 

I P(J) 0 2 3 4 5 6 7 

0 - {All Integers} Yes Yes Yes Yes Yes Yes Yes Yes 

1-11 No No No No No No No No 

2 - {All Even Integers} No No Yes No Yes No Yes No 

3 - tAll Odd Integers} No Yes No Yes No Yes No Yes 

4 - {All Primes} No No Yes Yes No Yes No Yes 

5 - tAil Integers> 3} No No No No Yes Yes Yes Yes 

6- JAii Perfect Squares} Yes Yes No No Yes No No No 

7- {All Perfect Cubes} Yes Yes No No No No No No 
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And once this Array #2 is set up, we can easily show that the 
assumed correspondence between I and P(I) isn't exhaustive 
and so isn't a valid 1-lC. We do this by using good old Diag
onalization to construct a subset of I that will never ever 
show up in the table's I~ P(I) correspondence. It's the sub
set defined by starting at the extreme northwest corner of 
Array #2's 'Yes'/'No' table and going diagonally southeast, 
changing 'Yes's to 'No's and vice versa throughout-like so: 

ARRAY#3 
0 2 3 4 5 6 7 

Yes Yes Yes Yes Yes Yes 

No No No No No 

No Yes No Yes No 

No Yes Yes No Yes 

No No Yes No Yes 

No No No No Yes 

Yes Yes No No Yes 

Yes Yes No No No No 

All we know about this new subset is that it includes 1, 4, 6, 
and 7, and that it differs in at least one member from each 
subset (a.k.a. each member of P(I)) in the original 1-lC. Nat
urally, our Array #3 is just a fragment, but by continuing the 
simple process of Diagonal 'Yes'-'No' switching we can guar
antee that the new subset generated thereby will differ from 
all the 1-1 C's subsets no matter how far out in the pairings 
we get. Hence a true 1-lC between I and P(I) is impossible. 
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Which means P(J) is nondenumerable,7°which means its car
dinality is greater than ~0• Q.E.D. 

While there are good reasons why we've gone through the 
proof in such graphic detail here, be advised that this is not 
the way G. Cantor does it. The truth is that he never explicitly 
lays out the Diagonal Proof for P(I) >I and therefore for 
P(A) > A; he merely alludes to it as a "natural extension" of 
his Diagonal Proof of the nondenumerability of the real 
numbers.71 The argument for P(A) >A that he does give is a 

70 M FROM SF.RIES EDITOR'S UITI'ER OF QUERIES ON MS. VERSION OF BOOKLET: 

"p. 272, paragraph following graphic of 'Array #3': so, in other words, no 

matter how many subsets of I we come up with, we can always create new 

ones! If so, do you want to say something like that, just to spell it out!" 

FROM TESTY AUTH. REPLY: "No we do not want to say something like that, 

because it's wrong. What Array #3 shows is that no matter how infinitely 

or oo"'ly many subsets of I we list, it's provable that there will always be 

some subsets that aren't on the list. This is, recall, what 'nondenumerable' 

means: incapable of being exhaustively listed/rowed/Arrayed (and, again, 

it's why there will always be more irrationals than Hankies of Death back 

in Dr. G.'s §2e demo---hankies, like integers and rationals, can compose 

only a denumerable co). Plus the 'we can always create new ones' part is 

deeply, seriously wrong: we're not creating new subsets; we're proving 

that there do exist and will always exist some subsets that no list or integral 

1-lC can capture. WI 'exist,' admittedly, requiring a wiseass 'as it were' or 

'whatever that means' or something-but the reader'd have to be a radical

Shiite Kroneckerian to believe that what we're doing in this proof is really 

creating these new subsets." 
71 m This brings up an important issue. You may well have noticed 

how closely the Diagonal Proof of P(ij's nondenumerability resembles 

§7c's Diagonal Proof of {all real numbers}'s nondenumerability. And now, 

given that both P(I)'s and {all reals j's cardinalities are> N0, you may well 

be wondering whether P(I)'s cardinal number is c just as {all reals}'s is. In 

which case you have derived, on your own, a version of one of the most 
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bit of a skulldutcher, but it ends up playing a key role in our 
Story's denouement and so needs to be spelled out. This 
proofs wholly abstract and nonspecific, designed to show 
only that from any infinite set A you can construct some infi
nite set B whose cardinal number trumps that of A. It would 
maybe be good to prepare yourself, emotionally, for having 
to read the following more than once: 

A is an infinite set; Bis the set of all subsets of A.72 Because 
all sets are by definition subsets of themselves, A is a subset of 
A, meaning A is a member of B; so it's definitely possible to 
set up a 1-1 C between all the members of A and at least one 
member of B. It is not possible, however, to set up a 1-lC 
between all the members of A and all the members of B. 
We're going to prove this by reductio, so we assume the cus
tomary position and posit that such a 1-1 C is indeed con
structed and is exhaustive of both infinite sets. Now, let a be 
any member of A and b be any member of B (sob is any sub
set of A). As we saw with Array #2 above, the 1-lC between A 
and B can be wholly random in the sense that, in any individ
ual correspondence a ~ b, a may or may not be a member of 
the b it's paired with. For instance, the integer 3 got paired 
with {All Odd Integers} and is itself an odd integer, whereas 
6 got paired with {All Perfect Squares} but is not a perfect 
square. It will be the same with our present 1-1 C and its infi
nite pairings a ~ b: sometimes a will be a member of the 

profound problems in Cantorian set theory, which problem gets hashed out 

at length in §7g. The point being that you are 100% right to be wondering 
about P(J)'s relation to c, but just hang on. 

72 M meaning that B is also P(A)-but it's easier if you forget about 

the whole Power Set thing for this proof. 
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subset bit's paired with; sometimes it won't. This is all fairly 

straightforward. Now, though, consider the total of all a's in 
the 1-IC that are not members of the b's they're matched 

with. Let cl> be the set of all such a's. cl> is, of course, a subset 
of A, which means that cl> is a member of B---and yet it's 
provable that cl> cannot be included in the supposedly exhaus
tive 1-lC between A and B. For if cl> is included, it's matched 
with some a, and there are as we've seen only two options: 
either this a is itself a member of cl>, or it isn't. If a is a member 
of <!>-but it can't be, since this contradicts the definition of$. 
But if a is not a member of cl>, then it is, by definition, a mem
ber of <!>-which it can't be, but so it must be, but so it can't be 
. . . and so you've got your LEM-grade contradiction either 
way. Hence no true 1-1 C between A and B is possible; hence 
B's cardinality is> A's cardinality. Quod erat dem.• 

,.SEMI-INTERPOLATIVE §7f. 

Please notice the way this last proof resembles the ancient 
Greek 'I Am Lying' paradox73 where if the sentence is true it's 

false and if it's false it's true. Meaning we've now entered the 
chasmal terrain of self-reference. This is the real reason we 
just slogged through Cantor's B >A proof-it opens up a 
whole new kind of crevasse for modern math. 

Though it's not strictly in our purview, be informed that in 
the 1930s Prof. K. Godel74 will use something very much like 
Cantor's '(a ft. cl>)~ (a E cl>)' device to prove his devastating 

73 IYI sometimes a.k.a. Eublides' Paradox to distinguish it from 
Epimenides' 'All Cretans Me Liars' variant-long story. 

74 M 1906-1978, modern math's absolute Prince of Darkness, refer
enced all the way back in §la and elsewhere. 
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Incompleteness Theorems. (In crude terms, Godel will prove 

that certain well-formed math propositions are true and yet 
unprovable by deriving 'Proposition P: Proposition P is 
unprovable' as a theorem.) More important for our purposes 
is this idea that sets can include other sets as members, which 
is essential to the concept of Power Sets and certainly looks 
innocent enough ... except after Cantor's proof it turns out to 
be to be a veritable swan-dive into the crevasse of self-reference. 
Example: Consider the theorem Cantor's just proved, that 
the set of all subsets of set A will always contain more mem
bers than A itself. But suppose now that A is defined as 'the 
set of all sets'. By definition, this A will contain all its subsets, 
since these subsets are sets-so here there's no way P(A) >A. 

Upshot: The same sets-of-sets principle that Cantor needs in 
order to build a hierarchy of infinite sets yields a paradox 
almost right away. 

Historical evidence shows that Cantor knew about the set
of-all-sets paradox by c. 1895,75 though never once in his 
published work does he mention it. It's nevertheless known 
now as Cantor's Paradox. It's also regarded as the basis for 

the most famous set-theoretic paradox of all, which is usually 
called Russell's Antinomy because the ubiquitous B. Russell 
used it to torpedo G. Frege's Foundations of Arithmetic in 
1901.76 We can sketch Russell's Antinomy very quickly and 

75 IY1 We know, for example, that he told D. Hilbert about it, and it's 

mentioned in at least one of Cantor's letters to Dedekind. Note now for 

later that there's also another paradox he stumbled on and also didn't pub

lish, which is known today as the Burali-Forti Paradox and has to do with 

transfinite ordinals, which as mentioned are themselves upcoming. 
76 m The Frege-R~ thing is a long but much-loved story among math 

historians, very easy to find elsewhere. (N.B. that Russell's Antinomy is just 
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easily because almost everybody's heard of it sometime or 
other. Though it drops right out of Cantor's abstract Power 
Set proof, the Antinomy also plays havoc with the main crite
rion in Cantor's definition of 'set,' which (you'll recall from 
§7a FN 16) is that there's always a procedure such that for 
any given item you can always determine whether it's a mem
ber of a given set.77 So here is Russell's Antinomy. As we've 
seen, some sets are members of themselves and some aren't. 
Actually, most aren't-as in for example the set of all chairs is 
not itself a chair, the set of all entities that can tie a knot in a 
cherry-stem with their tongue cannot itself tie such a knot, 
etc. But some sets do contain themselves as members, e.g. the 
set of all sets, the set of all abstractions, the set of all entities 
that cannot tie a cherry-stem knot. Russell calls a set that is 
not a member of itself a normal set, and one that is self
containing an abnormal set. So now consider the set N of all 

as often called Russell's Paradox-but it gets tiresome saying 'paradox' over 

and over.) 
77 m Once again, it's all a bit more complicated than that. What Rus

sell's Antinomy really exploits is an unsound axiom in early set theory 

called (no kidding) the Unlimited Abstraction Prindple, which in effect 

states that every conceivable feature/condition determines a set-i.e., that 

given any conceivable property, there exists a set of all entities possessing 

this property. Three quick remarks about the U.A.P. (I) Notice its intrigu

ing resemblance to Plato's One Over Many argument from §2a. (2) It 

ought to become evident soon in the main text why the U.A.P. is faulty 

and enables Russell's Antinomy. (3) Please hold neocortically for just a few 

pages the fact that the Zerrnelo-Fraenkel-Skolem system of axioms for set 

theory amends the U.A.P. to the Limited Abstraction Principle, which holds 

that given any property p and a set S, we can form the set of all elements of 

S that have p. 
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normal sets-is Na normal set?78 Well, if N is a normal set, 
then by definition it isn't a member of itself; but N is the set 
of all sets that aren't members of themselves, so N is a mem
ber of itself if it isn't a member of itself; although now if 
N really is a member of itself then it can't be a member of the 
set of all sets that aren't members of themselves, so N actually 
isn't a member of itself, in which case it is . .. and around and 
around ad inf. 

This kind of paradox, like the '(a ft cf>) ~ (a E cf>)' cruncher 
in Cantor's reductio, is officially known as a Vicious Circle. 

The 'vicious' here means roughly the same thing it did in 
§2a's VIR, namely that it becomes logically impossible to do 
something we're logically required to do. In VC paradoxes 
like Russell's and Cantor's, what we cannot do is determine 
whether something is or isn't a member of a set, which vio
lates both the formal definition of 'set' and (way worse) LEM. 
So these are not lightweight problems. 

By this point you've almost certainly discerned the Story of 
oo's overall dynamic, whereby certain paradoxes give rise to 
conceptual advances that can handle those original paradoxes 
but in tum give rise to new paradoxes, which then generate 
further conceptual advances, and so on. If you're one of the 
readers who is bothering with the 'IYI' footnotes, you've 
already seen stuff about one kind of technical remedy for 
Russell's Antinomy, which is Zerrnelo et al.'s replacement of 

78 IYI The remainder of this text-1 is skippable if you can already see 

how the paradox works just from "Is Na normal set?" (IYI2 Russell also 

has a famous way to set up his Antinomy in natural language, to wit: Imag

ine a barber who shaves all and only those who do not shave themselves
does this barber shave himself or not?) 
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the Unlimited Abstraction Principle with the Limited A.P. 
Another type of solution is the prohibition of impredicative 
definitions championed by J. H. Poincare (1854-1912), a major 
figure in topology who incidentally was, after Kronecker's 
death in 1891, the #1 opponent of transfinite math.79 Poin
care's definition of impredicative is somewhat shifty, but in 
essence it means defining an object in terms of a whole group 
of objects of which it's a part. Even more essentially, an 
impredicative definition depends on self-referential proper
ties and descriptions, and 'The set of all sets that are not 
members of themselves' is a perfect example of such a defini
tion (as are 'The set of all sets' and Cantor's def. of set 4> in 
the B >A proof above). This all gets very involved, but Poin
care's general tactic is to characterize impredicative defini
tions in terms of the paradoxical results they can yield,80 

which then forms the logical argument for disallowing them. 
It's rather the same way dividing by 0 got outlawed. Unfortu
nately, the formal definitions of all sorts of terms and concepts 
in analysis, from 'sequence' and 'series' to 'limit point' and 
'lower bound,' are also impredicative-not to mention that 
the concept of impredicativity can itself be made to generate 
nasty VCs81-so Poincare's solution never really caught on. 

79 M In this opposition Poincare's often associated with the finite· 
point-set specialists E. Borel and L. Lebesgue, and in the metaphysics of 

math this trio's sometimes known as the Anti-Platonic School. 
80 very much like the Greek characterization of oo as to apeiron. 
81 m Here's one you may already have anticipated: If some quality is 

impredicative if it applies to itself-say e.g. the quality of being expressible 
in natural language, or correctly spelled, or abstract-then we can call a 

quality 'predicative' if it doesn't apply to itself. So this quality of being 
predicative-is it predicative, or impredicative? 



280 DAVID FOSTER w ALLACE 

Russell's own proposed way to avoid his and Cantor's 
eponymous Paradoxes is the Theory of Types, which to make 
a very long story short is part of Russell's foundational pro
gram for trying to show that all math is reducible to symbolic 
logic. The Theory of Types is a sort of grammar of abstrac
tion that disallows certain kinds of propositions in which dif
ferent Types of entities are treated as equivalent. Meaning, in 
essence, metaphysically equivalent. 82 The idea is that sets of 
individuals are not the same Type of entity as individuals 
themselves, and sets of sets are not the same Type as sets of 
individuals, and so on. And a particular entity's Type is a 
direct function of how abstract that entity is, so you end up 
with a set-theoretic hierarchy that resembles the informal 
abstraction-Levels we talked about in §lb--Russell's Type 
1 = Individuals, Type 2 = Sets, Type 3 = Sets of sets, Type 
4 = Sets of sets of sets, etc. etc. 83 What enables the theory to 
preempt Vicious Circles is that the same sort of hierarchy can 
be applied to propositions-e.g., Type x = some entity of 
some particular Type; Type (x + 1) = some proposition 
about that entity; Type (x + 2) =some proposition about 
that proposition about the entity; and so on. (N.B. that for 
Russell 'proposition' can mean either a natural-language sen
tence or a formaVmathematical assertion like 'a E A'.84

) And 

82 IYI Yes: we're now coming back around to the abstract existence and 

denotation questions posed in §I. 
83 IYI If you think you can see the ghost of Aristotle's Third Man hover

ing around the Theory of Types, you are not mistaken. Many of the foun

dational problems in set theory end up looping back to Greek metaphysics. 
84 IYI N.B. also that Russell's arguments for the connection between the 

metaphysical Typology of entities/abstractions and the semantic Typology 

of entities/statements/metastatements are lengthy and complex, but they 
do exist-it's not like he's positing all this out of nowhere. 
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the big rule is that, where m and n are integers, a proposition 
or set of Type n cannot b«: applied to another proposition/set 
of Type n, but only to a proposition/set of some Type m 
where m < n. 

As far as our Story's concerned, the Theory of Types can 
be seen as a perfect example of trying to legislate one's way 
out of a paradox. The theory does indeed offer a 'solution' to 
Russell's and Cantor's crunchers-that is, it gives an account 
of what the paradoxes' illicit move is-but it's also incredibly 
arcane and cumbersome, and ultimately as damaging to 
math as Poincare's impredicativity thing. Quick example: 
Since rational numbers are defined as ratios of integers, and 
surds as sets/sequences of rationals, the three kinds of num
bers are of different Types, and by the theory's rules we 
couldn't predicate things of all three in common without 
endless different proofs and Levels and caveats. FYI, Russell 
tried to patch up some of these difficulties via what he called 
Axioms of Reducibility, but these were even more compli
cated and contrived ... and basically his whole Typology spins 
off into the aether and is now of merely historical interest. 85 

If it's necessary to say once again that we're just barely 
skimming a turbid surface here, consider it said. Specific 
counter-paradox measures like Russell's and Poincare's are 
part of a much larger and deeper crisis, one that predates 
G. Cantor but is brought to a head by his theories of oo. 

Thrust, broadly stated: The paradoxes of set theory, coupled 
with the foundational concerns that start with Abel and 

85 m Subsequent extensions and modifications of Russellian Type

theory, by logicians like F. P. Ramsey and A. Tarski, are so nightmarishly 

complicated and confusing that most mathematicians will pretend they 

don't even hear you if you try to bring them up. 
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Cauchy and climax with Frege and Peano, lead directly to the 

great Formalist-v.-Intuitionist controversies of the early 
1900s. These are controversies that we again can only trace 

the outlines of. Respecting infinite sets, for example, Intu
itionism is rabidly anti-Cantor and Formalism staunchly 
pro-Cantor, even though both Formalism and Intuitionism 
are anti-Plato and Cantor is a diehard Platonist. Which, 
migrainous or not, means we're again back to metaphysics: 
the modern wrangle over math's procedures is ultimately a 
dispute over the ontological status of math entities. 

There's already been some intro to lntuitionism in §6's 
discussions of Constructivism; Formalism is its own separate 
kettle. The best way to come at this might be to recast the 
broadly stated thrust just above, to wit: The paradoxes of set 
theory are part of the larger issue of the Consistency of Math, 
which D. Hilbert proposed as Major Problem #2 86 at the 
same Paris Congress where he could be seen rhapsodizing 
about Cantor in §la. Hilbert's own program for reconstruct
ing mathematics in such a way that theorems don't yield 
paradoxes is Formalism, which seeks to make the abstractness 

of math both total and primary. The basic idea of Formalism 
is to totally separate math from the world and tum it into a 
game. Literally. This game involves the manipulation of cer
tain symbols according to certain rules that let you construct 

86 IYI meaning the second of the 10 Major Unsolved Problems that 

Hilbert listed at 1900's 2nd I.C.M. as crucial for math to nail down in the 
upcoming century-another whole long story you can find in any good 
math-history survey. (M2 If you've learned/heard that there were really 

23 Hilbert Problems, the truth is that Hilbert listed 1-10 in his Paris 
speech and 1-23 in the written version that came out in 1902.) 



Everything and More 

sequences of symbols from other sequences of symbols. It's 
100% formal-hence the name. What the math-game's sym
bols mean, or whether they even denote at all, has nothing to 
do with it; and to say that a math entity 'exists' is merely to 
say that it doesn't cause a contradiction.87 What matter are 
the rules, and the whole project of Formalism is proof
theoretic: the goal is to construct a set of axioms and rules of 
inference88 from which all of math can be derived, so that the 

whole thing's totally deductive and rigorous and dean-as a 
self-enclosed game, that is. 

If you have any sort of background in logic or the philoso
phy of math, you'll recognize that this is a radically boiled
down description of Formalism. (For one thing, Hilbert's 

program also involves breaking math down into Levels of 
reasoning somewhat like Russell's Types, with again no inter
Level propositions allowed.) You'll also probably know that 
the movement runs into serious problems long before 
Godel's aforementioned proofs that a formal system can't be 

87 Compare this Formalist ontology to the view of Jntuitionism that 

"[M]athematical objects are mental entities that do not exist indepen

dently of our ability to provide a proof of their existence in a finite number 

of steps." You can see that the two views are not all that dissimilar, espe

cially in their rejection of the idea that math has anything to do with extra

mental reality-although the lntuitionists' "finite number of steps" 

criterion is specifically meant to outlaw entities like irrationals and infinite 

sets that Poincar~ and Brouwer, like Kronecker before them, had meta

physical (not just procedural) problems with. (M Dr. G.'s way to contrast 

the two schools was to say that Intuitionism was sneaky whereas Formal

ism was more just crazy.) 
88 m q.v. §le. 
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both Complete and Consistent89 -like e.g. the Formalists 
couldn't even get basic arithmetic to be Complete and Con
sistent if it included multiplication as a legal operation, which 
is obviously a serious problem. So we don't have to talk about 
the philosophical impoverishment or flat-out weirdness of 
a referentless math-game, because Formalism couldn't even 
succeed on its own terms. 

The most coherent and successful responses to the VC 
paradoxes come from within set theory itself (which by 
c. 1900 is a thriving field in both math and logic, thanks to 
guess who), and are spearheaded by Cantor's #1 follower and 
systematizer, Prof. E. Zermelo.90 A result of these responses is 
the split of abstract set theory into two subtypes, nai"ve set the
ory and axiomatic set theory. N.S.T. is just regular Cantorian set 
theory with all its warts and glories, including its susceptibility 
to paradoxes. 91 Axiomatic set theory is an attempt to derive a 

89 These C-words should have been E.G.m'd by now. They're model

theoretic terms from logic. A system is Complete if and only if every last true 

proposition can be adduced as a theorem; it's Consistent if it doesn't include 

or entail any contradictions. There's incidentally a third, briefly aforemen
tioned criterion called Decidability, which concerns whether there's a pro

cedure/algorithm for determining, for any well-formed proposition of the 

system, whether or not it's true (i.e., whether it's a theorem). The three cri

teria are obviously interconnected, but they're also distinct in important 

ways; and a deductively immaculate formal system is supposed to satisfy all 
three ... which Gtidel basically showed no system could, which is why he's 

the Dark Prince, and why pure math's been in mid-air for the last 70 years. 
90 M Dates: 1871-1953. Major paper: "Investigations of the Founda

tions of Set Theory" (1908). Main collaborator: A. Fraenkel, who is also 
Cantor's first biographer. 

91 which paradoxes many working mathematicians now don't worry 

too much about in the course of their day-to-day work, any more than we 
worry about melting through the floor when we get out of bed. 
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more rigorous, foundationally secure version of set theory 
that's got all the conceptual power of N.S.T. but is set up in 
such a way as to avoid gross paradox. The A.S.T. program is 
somewhat Formalist in spirit, and Euclidean: it's to make set 
theory its own independent formal system92 with its own set 

of axioms that yield maximal Consistency and Completeness. 
As mentioned someplace already, the best-known axiomatic 
system is usually called ZFS (for Zerrnelo, A. Fraenkel, and T. 
Skolem); there's also the more restrictive von Neumann
Bemays ( VNB) system, as well as some others, w/ various 
metatheoretical bells and whistles, designed by eminences like 
A. Tarski, W. V. 0. Quine, F. P. Ramsey, & c. 

As it happens, axiomatic set theory and the logic of same 
have had fruitful applications in everything from math's the
ory of real functions, analysis, and topology, to generative 
grammar and syntax studies in linguistics, to decision theory, 
algorithms, logic circuitry, halting-probabilities/'0-studies,' 
A.I., and combinatorial processing in computer science. 
Despite increasingly dire space limitations, it is therefore 
worth it to include at least a doubletirne tour of the basic 
axiomatization that all the major systems are variations of, 
w/ terse and directly relevant glosses where necessary-and 

92 Probably rather than 'independent' it would be better to say 'concep
tually prior to,' or 'underlying,' mathematics per se. The idea behind 
A.S.T. is that since set theory is the most abstract and primitive branch of 
math, it serves as the foundation for math's most basic concepts, such as 
'number,' 'function,' 'order,' etc. Though the whole issue gets very 
involved-particularly the questions of set theory's relation to symbolic 
logic and of which one is math's real fundament-it's nevertheless true 
that G. Frege and G. Peano, the two most important figures in the founda
tions of arithmetic, both define numbers and basic math operations in 
terms of set theory. 
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of course at this late point the whole thing being skip- or 
skimmable at your IYI discretion-as follows: 

Primitive Concept: The membership relation E, where's E S' 

means object s is a member of set S. 
Ax. 1: Two sets are equal if they contain the same mem

bers. (Notice it's not 'if and only if. . .';this is because infinite 
sets and their proper subsets can also be equal.) 

Ax. 2: If a and bare either objects or sets, then {a, b} is a set. 
Ax. 3: There are two variants of this one. 1st variant-For 

a set Sand a 'definite predicate'93 P, there exists the set Sp that 
contains only those x E S 94 that have the property designated 
by P. 2nd variant-There exists a set S with the following 
features: (a) 0 E S, and (b) For any .x, if x E S, then {x} E S. 
(These are two technically distinct versions of the Limited 
Abstraction Principle mentioned supra. Both versions do two 
important things. First, they establish that the empty set 
exists. Second, they define and validate the set-theoretic 
method of transfinite induction and, via this method, estab
lish the existence of a denumerably infinite set S whose 
members are 0, {0}, {{0}}, {{{0}}}, .... 95 Whereupon if, in 
this set, 0 is taken to be 1 and, for any x, {x} equals (x + 1), 

then S becomes the ordered set of all positive integers (which 

93 M = either a single-valued function or some natural-language pred

icate that's meaningful for all members of S (where 'meaningful' basically 

means the predicate is something you can verify as definitely T v. F for any 

set-member, like 'is blue' or 'weighs more than 28.7 grams' as opposed to 
'is lovely' or 'tastes like chicken'). 

94 Using the membership symbol in a noun phrase like this is the sexy 

way to say 'member of S'. 
95 So an obvious corollary to the L.A.P. is: Infinite sets exist. 
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happens to be very close to the way Peano's Postulates96 gen
erate the integers).) 

Ax. 4: The union of a set of sets is itself a set. (This serves as a 
technical definition of 'union,' from which 'intersection,' 'Carte
sian Product,' 97 etc. can be derived by logical manipulation 

96 m Here's another place where it's unclear exactly which readers will 
know or remember what's being tossed off. If Peano's Postulates are not 

familiar and you'd like them to be, invest 45 seconds in the following: P.'s 

P.s are the five basic axioms of number theory; they're how you derive the 

whole infinite sequence of positive integers from just two primitive con

cepts, which latter are (a) 'is an integer,' and (b) 'is a successor of'. In nat

ural language, the Postulates are: (I) 1 is an integer; (2) If xis an integer, 

the successor of xis an integer; (3) 1 is not the successor of an integer; (4) 

If the successors of two numbers x and y are equal, then x = y ; ( 5) If a set I 

contains I, and if, for any integer x in /,the successor of xis in I, then every 

integer is in I. Just why Postulate (5) is the axiomatic authority behind 

proof by mathematical induction becomes clearer in an alternative formu

lation, which goes more or less: (5) If Pis a certain property, and if l has P, 

and if whenever an integer x has P, the successor of x has P, then all inte

gers have P. 

(ffi2 Gorisian factoid: Though Peano does deserve lOOo/o credit for intro

ducing all kinds of important stuff to nwnber- and set theory (not least the 

standard symbols 'E,' 'n,' and 'U'), his eponymous Postulates are a clear 

case of capricious math-fame, since axioms equivalent to (l )-(5) appeared in 

Dedekind's "Nature and Meaning of Nwnbers" at least two years before 

Peano's own Arithmetices Principia Nova Method£ Exposita came out.) 
97 m We won't bother much with Cartesian Products except to say (1) 

that they're a specific kind of interset union involving 'ordered pairs,' which 

are a whole saga to themselves; and (2) that C.P.s instantiate the important 

principle of Preservation of Homogeneity, meaning that if two sets A and B 
both have certain special characteristics, their Cartesian Product (A X B) 

will also have those characteristics (like if A and B are point sets and both 

characterize topological spaces, their C.P. will also be a topological space). 
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(rather the way you can define the logical connective 'and' 
wholly in terms of 'not-' and 'or').) 

Ax. 5: The famous Power Set Axiom: For any set S, there 
exists the Power Set P(S) of S. (This one establishes the infi
nite hierarchy of infinite sets. Recall from §7b ff. that all set 
theory is trivial in the case of finite sets, w/ 'trivial' meaning 
you can check the veracity of any set-theoretic proposition 
just by looking at the members of the relevant sets. The whole 
point of these axioms is to be able to prove theorems that are 
trans-experiential, 100% abstract-just like oo itself.) 

Ax. 6: The famous and infamous Axiom of Choice. In the 
nomenclature of set theory, the A.C. is: 'If S is a set of pair
wise disjoint nonempty sets, the Cartesian Product of the 
members of 5 98 is not empty; every member of this Cartesian 
Product is designated a selection set of S'. In regular English, 
it's that from any S you can construct a subset S' with a par
ticular property even if you can't specify a procedure for 
choosing the individual members of S'. (Zermelo came up 
with the Axiom of Choice in the early 1900s. It's way too tech
nical to try to unpack here,99 but one important consequence 
of the A.C. is the well-ordering principle, viz. that any subset 
S' of any set S can be chosen and arranged in such a way that 

98 m Here 'Cartesian Product' specifically means (deep inhalation) 

'the set of just those subsets of the union of all members of S such that each 

(=each subset) contains exactly one member of each set in S'. This sort of 

thing is just to let you sample the heady bouquet of real A.S.T. 
99 m Any decent mathematical-logic or set-theory text will give you a 

whole chapter on the Axiom of Choice and its relation to such other 
high-eros concepts as Russell's Multiplicative Axiom, Zorn's Lemma, the 

Trichotomy Principle, the Hausdorff Maximal Principle, and (no kidding) 
the Teichmiiller-Tukey Maximal Element Lemma. 
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S' has a first member. We've already seen the importance of 
this principle in 1-1 C demonstrations, e.g. the very first one 
about {all integers} and {all positive integers} having the 
same cardinality. The w.o.p. is also crucial for Cantor's 
proofs that c > ~o and P(I) > I, since these proofs' various 
arrays all obviously had to have a first element. But the 
Axiom of Choice was also horribly controversial (for one 
thing, you can understand why Intuitionists and Construc
tivists hated the idea that you could designate a subset with
out any kind of procedure for picking its members), and it 
remained one of the great vexed questions of set theory until 
(1) K. Godel in 1940 proved the A.C's logical Consistency 
with set theory's other axioms, and then (2) Prof. P. Cohen100 

in 1963 proved the A.C.'s logical Independence from (i.e., its 
negation's Consistency with) set theory's other axioms, which 
proofs together pretty much settled the Axiom's hash.101

) 

Ax. 7: This one's usually known as the Axiom of Regular
ity; it too has several versions. The simplest one is that 
whether xis an object or a set, x fl. x. A racier formulation is: 
'Every nonempty set S contains a member x such that S and x 

100 man American(!) whom we're also about to see in action w/r/t the 

Continuum Hypothesis, just below. 
101 m The proof-career of the A.C. is-surprise---a very long story; the 

upshot of which is captured in the following from E. Mendelson's 1979 
Introduction to Mathematical Logic (wf the second sentence being about as 
heated as a logician ever gets): 

The status of the Axiom of Choice has become less controversial in 
recent years. To most mathematicians it seems quite plausible and 
it has so many important applications in practically all branches of 

mathematics that not to accept it would seem to be a willful hob
bling of the practicing mathematician. 
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have no common member.'I02 (The Axiom of Regularity sort 
of encapsulates Poincare's and Russell's objections to self
reference; or at any rate it's this axiom that heads off Russell's 
Antinomy. It also bars formulations like 'the set of all sets' 
and 'the set of all ordinal numbers' and so avoids Cantor's 
Paradox and the soon-to-be-explained Burali-Forti Paradox. 
Notice it also disallows Cantor's <!>-based proof of P(A) > A 
in §7e. This is why there's the whole separate Power Set 
Axiom above, from which P(A) > A can be derived without 
any sort of proof that violates the Axiom of Regularity. But 
please be informed that even with the A.R., axiomatics like 
ZFS can still be prone to certain model-theoretic paradoxes, I03 

so that as of say 2000 C.E. there's now a whole hierarchy of 
axiomatizations for set theory, each with its own special 
immunity to paradoxes, known in the trade as Consistency 
strength. If you're interested-and because if nothing else 

102 m If you'd like to see the A.R. in 100% naked symbolism, it's 
(VS)[(S .. 0) - (3x)((x ES) & (x n S = 0))], in which the only unfa
miliar symbols might be the predicate-calculus quantifiers 'VS' (which 
means 'For all S ... ') and '3x' (which means 'There exists at least one x 

such that .. .' (w/ 'exists' meaning mathematically/set-theoretically (which 
of course assumes that this kind of existence is distinct from some other 
kind(s)))). 

103 These have to do mainly with how many different valid interpreta

tions an axiom system can have (model being the uptown term for a spe
cific interpretation of what the abstract symbols and formulae really stand 
for). It turns out that most reasonably Complete axiomatics have a oo of 

valid models-sometimes even a nondenumerable oo of them-which 
entails enormous headaches, since systems like ZFS or Peano's Postulates 
are set up with fairly specific models in mind, and it's not difficult to see 

that, with an actual oo of possible models, some are going to contradict the 
desired ones. 
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their names are fun-today's main systems, listed in order of 
increasing Consistency strength, are: Peano's Postulates, Ana
lytic, ZFS, Mahlo, VNB, Quinian, Weakly Compact, Hyper
Mahlo, Ineffable, Ramsey, Supercompact, and n-Huge.) 

ENDS-L§7f. 

§7g. You've doubtless noticed that it's been a while since 
G. Cantor meme has been mentioned and have maybe won
dered where he is in all §?f's foundational roil. Poincare's 
and Russell's prophylactics, Zennelo's axiomatizations, etc. 
are all around the early 1900s, by which time Cantor's best 
work is behind him and he's mostly abandoned math for the 
obsessive preoccupations that consumed his later years. 104 It's 
also now that he's in and out of hospitals all the time. The 
poignant irony is that it's just when Cantor's work is gaining 
wide acceptance and set theory is inflorescing throughout 
math and logic that his illness gets really bad, and there are all 
sorts of special conferences and awards presentations he can't 
go to because he's too sick. 

More directly apropos is that even when Cantor first hap
pened on his paradoxes in (probably) the 1880s, he didn't 
worry too much about them, or rather couldn't, because he had 
more pressing problems. As in mathematically. Chief among 
them is what's now known as the Continuum Hypothesis. 105 The 

104 IYI His two main ones were Jesus's real (biological) paternity and 

the Bacon-v.-Shakespeare question. By way of armchair psych, both these 
issues concern not just factual accuracy but the denial of credit to someone 

deserving. Given the amount of professional shit Cantor took, his choice 

of obsessions seems thus both understandable and sad. 
105 M In some texts this is referred to as the Continuum Problem. 
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C.H. gets characterized in all kinds of different ways-'Is the 
power of the Continuum equivalent to that of the second 
number class?'; 'Do the real numbers constitute the Power 
Set of the rational numbers?'; 'Is c the same as 2tt0?'; 'Does 
c = ~ 1?'-but here's the nub. Cantor has already proved that 
there's an infinite hierarchy of infinite sets and their Power 
Sets, and he's proved that P(A) = 2A and 2A >A are theo
rems for infinite sets. But he hasn't yet proved just how these 
different results are connected. The central question is 
whether the 2A > A thing constitutes an exhaustive law for 
how the transfinite hierarchy is arranged-that is, whether 
for any infinite set A the next larger set is always 2A, with no 
intermediate oos between them-and thus whether this 
process of 'binary exponentiation' is the way you get from 
one infinite set to the next, just the way addition lets you get 
from one integer to the next. A yes to this long question is the 
Continuum Hypothesis. What's now regarded as the 
general form of the C.H. is 21tn = ~n+I• 106 but Cantor's 
original version is more specific. We know that he's 
proved the existence and cardinalities of two distinct infinite 
sets, namely the set of all integers/rationals/algebraics 
( = ~0) and that of all reals/transcendentals/continuous inter
vals and spaces ( = c); and he's proved that c > ~0• His 
own Continuum Hypothesis is that c = i\ i.e. that c is 
actually ~ 1 , the very next infinite set after tl;0, with nothing in 
between. 107 

106 Mathematicians who call it the Continuum Problem frame the gen

eral form as 'Does there exist a set of higher cardinality than ~n but lower 

cardinality than P(~.)?' 
107 IYI It's Cantor's specific focus on cthat gave the C.H. its name. 
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Cantor's attempts to prove the C.H. went on through the 
1880s and '90s, and there are some heartbreaking letters to 
Dedekind in which he'd excitedly announce a proof and then 
a couple days later discover an error and have to retract it. He 
never did prove or disprove it, and some pop-type historians 
think the C.H. is what really sent Cantor over the edge for 
good. 

Mathematically speaking, the truth about the Continuum 
Hypothesis is more complicated than pop writers let on, 
because Cantor really comes upon the C.H.'s various prob
lems through his work on ordinal numbers, which numbers' 
relations are rather more like the 'R = ~(P', P", P"', ... )' 
thing of §7b, and which despite our best intentions we now 
have to sketch very briefly. 108 First, to save time, please recall 
or review §Se(l) FN 78's primer on ordinal v. cardinal inte
gers. We're now concerned with ordinal numbers in set 
theory, which are a little different, and involve the concept of 
sets' order-types. Simple explanation: We know that if sets A 
and B have the same cardinal number, they are 1-lC-able. If 
this 1-lC can be carried out in such a way that the order of 
the members of A and B remains unchanged, then A and Bare 
the same order-type. (A straightforward example of two sets 
with the same cardinality but different order-types was (all 
positive integers} and {all integers} in §7c. Remember that we 

IOii IYI N.B. that what follows is, even by our standards, a woefully sim

plistic overview of Cantor's theory of ordinals--a theory that's even more 
complex and ramificatory than the cardinal number stuff-and the only 
reason we're even dipping a phalange here is that it would be more woeful 
still to pretend that the C.H. has only to do with the hierarchy of transfi

nite cardinals. 
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had to tinker with the latter set's order so that it would have a 

first member to match up with the set of positives' I.) 

You can see why this is going to be more complicated than 

the cardinals: we're now concerned not just with a set's num

ber of members but with the way in which they're arranged. 
Or rather ways, because the possible permutations of these 

arrangements form a good part of the ordinal theory's meat. 
Which meat we will now look at, though you should be aware 

that there are a great many technical terms and distinctions
'ordered,' 'well-ordered,' 'partially ordered,' 'everywhere-' v. 

'nowhere dense,' 'relation number,' 'enumeration theorem,' 
and so on-that we are going to mostly blow off. 109 Some 

basic facts: For finite sets, cardinality = order-type; that is, 

two finite sets with the same cardinal number will automati
cally have the same order-type. This is because there's exactly 

one order-type for all sets with one member, one order-type 
for all sets with two members, and so on. uo The total number 

of possible order-types for finite sets is, in fact, the same as 
the cardinal number of the set of positive integers, namely ~0• 

It's with infinite sets that order-types get complicated. Which 

should be unsurprising. Take the prenominate denumerably 
infinite set of all positive integers: { 1, 2, 3, 4, . . . } has more 

than one order-type. This doesn't mean just switching certain 

tCJ'J IYl G. Cantor's horripilatively technical theory of ordinals and sets' 

order-types gets worked out mostly in two papers, "Principles of a Theory of 

Order-Types" (1885) and the booklet-length "Contributions to the Found

ing of the Theory ofTransfinite Numbers" ( 1895 ). 
110 The reason that might be confusing at first is the same reason our 

initial explanation's "in such a way that the order of the members of A and 

B remains unchanged" was simplistic--order-type is not the same as mere 
arrangement. '{a, b}' and '{b, a}' are the same order-type, for instance. 
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chunks of numbers in the infinite sequence around, since the 
set will still be 1-1 C-able with the original set of positive inte
gers, even if the correspondence is something like 

2 18 6,457 1 ... 

t t t t 
1 2 3 4 ... 

But if you take one of the set of integers' members and put it 
last-as in {I, 3, 4, 5, 6, 7, ... , 2} you now have a totally dif
ferent order-type. The set {l, 3, 4, 5, 6, 7, ... , 2} is no longer 
1-1 C-able with a regularly ordered ~o set that has no last 
member and so gives you no way to arrive at anything to 
match up with the 2. Plus observe that in the new order-type, 
2 becomes a different ordinal number: it is no longer the 2nd 
member of the set but rather now the last member, and it has 
no specific number immediately before it. Hence the com
prehensive def. of ordinal number: It's a number that identi
fies where a certain member of a set appears in a certain 
order-type. Ill 

In Cantorian set theory there are two main rules for gener
ating ordinal numbers. (1) Given any ordinal number n, you 
can always derive the next ordinal, which is n + 1. (2) Given 
.any set N of ordinal n's ordered in an increasing sequence 
(e.g., the set of positive integers), you can always derive a last 
ordinal that's bigger than all the other n's. This final ordinal 
technically functions as the limit of N's sequence and can be 

111 IYI Another tailored analogy of Dr. G.'s was that cardinal numbers 

are like the characters in a school play and ordinal numbers are the marks 
they're supposed to hit in a scene, as in a play's script v. its stage directions. 
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written 'Lim(N)'.112 These rules don't look too bad, but 
things start to get tricky when we consider not just sets of 
ordinal numbers but ordinal numbers as sets--which we can 
do because a basic tenet of set theory is that all math entities 
can be represented as sets (e.g., the transfinite cardinal ·~0' is 
the set of cardinal numbers {l, 2, 3, 4, ... }; plus recall §2a's 
ante rem thing about '5' literally being the set of all quintu
ples). So but then just what set is some ordinal number n? 
The answer is Cantor's third big rule: for any ordinal n, 
n = the set of all ordinals less than n; i.e., n is identified with 
just that set of ordinals of which it is the limit.113 Or, in 
formal terms, 114 n = { (Vx)x < n}. You can generate the whole 
sequence of regular integers (as either cardinals or ordi
nals) this way: 0 = {(Vx)x < O} = 0; 1 = {(Vx)x < 1} = {O}; 
2 = {(Vx)x < 2} = {O, l}; and so on. The ordinal number of 
the whole denumerably infinite set {O, 1, 2, 3, 4, ... } gets 
symbolized by the little omega 'w'. This transfinite ordinal 
is the limit of the set's members' sequence-that is, it's 
the very smallest number bigger than all finite integers. 
Another, more common way to describe w is that it's the 

112 m We can see here some clear affinities with Cantor's theory of 

irrationals as limits of number-sequences (in §6e). This earlier theory was, 
in certain ways, the origin of his work on ordinals. 

u3 M The heretofore undefined Burali-Forti Paradox drops right out 

of this definition. Consider the set of all ordinal numbers everywhere. Now 

consider this set's own ordinal number, which by definition will be greater 

than any ordinal in the set-except that set was defined as containing all 
ordinals. So either way there's a contradiction. This is a mean one, and it's 
the real prophylactic motive behind the Axiom of Regularity. 

114 Except q.v. §7f FN 102 for what the upcoming 'Vx' means-which 
in retrospect means that FN l 02 should not have been classed m. 
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ordinal number of that set of which ~0 IS the cardinal 
number.m 

m INTERPOIATION 

However hard the last 1 seemed, most everything beyond 
that in the theory of ordinals is so brutally abstruse and tech
nical that we can only make some general observations. One 
is that the arithmetic of transfinite ordinals is different from 
but no less weird than that of transfinite cardinals-for 
example, (1 + w) = w, but (w + 1) > w because by defini
tion ( w + 1) is the very next ordinal after w. Another is that, 
just as with the cardinal ~s, an infinite hierarchy of transfinite 
ordinals of infinite sets of ordinals is generatable (you might 
want to read that last clause over), though in this case it's a 

115 DEFINITELY IYI Not sure it's smart to mention this, but at least 

sometimes G. Cantor used '~0' to designate the 1st transfinite ordinal and 
'w' to designate the lst transfinite cardinal. The strict truth is that it was 
really the set of all finite ordinals (which is what he really called the "first 

number class") that Cantor used to derive the first transfinite cardinal
which he basically did because in his theory cardinal numbers were also 

definable as limit ordinals, which concept we're not discussing because it 
requires a level of set-theoretic detail on the relations between cardinal and 
ordinal numbers that this booklet's not equipped for. We are using what's 
now come to be the standard symbolism, viz. ~·s for transfinite cardinals 
and 'w's for transf. ordinals; the reasoning is that this symbolism stands 
the best chance of being familiar to at least some readers. (N.B. that the 

undiluted poop on Cantorian math in all its intricacies is available in sev
eral good technical books, including Dauben's aforementioned Georg 

Cantor, Abian's aforementioned Theory of Sets, and E. V. Huntington's 

The Continuum and Other Types of Serial Order, with an Introduction to 

Cantor's Transfinite Numbers---q.v. Bibi.) 
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very different process from the 2M" = ~n+I thing. The 
transfinite-ordinal hierarchy is associated both with abstract 
entities called epsilon numbers and with an arithmetical oper
ation called tetration. We're not getting near the former 
except to say that they're essentially a class of numbers such 
that wE = E 

116
; but tetration is simpler, and you might already 

be familiar with it from, say, field theory or combinatorics if 
you had a lot of college math. It's basically exponentiation on 
acid. The 4th tetration of 3 is written '43' and means 3(3

(
3'», 

which= 3<3
\ which= 319

•
683

, which you are hereby dared 
to try to calculate. The technical connection between tetra
tion, transfinite ordinals, and epsilon numbers is the fact 

that e0 = "'w, which isn't all that important. But if you 
can conceive, abstractly, of a progression like w, ( ( w+ 1 ), 
( w + 2), ... , ( w + w) ), w2

, w"', "'w, "'"'w, ... , then you can get 
an idea--or at any rate an 'idea'--of the hierarchy and the 
unthinkable heights of ordinal numbers of infinite sets of 
infinite sets of the ordinals of infinite sets it involves. End 
general obs. 

END ML 

All right, so the specific way that Cantor runs up against 
the Continuum Hypothesis concerns ordinals and order
types. We've seen that there's more than one order-type for 
infinite sets, as with {1, 2, 3, 4, ... } v. {1, 3, 4, ... , 2} a few ts 

116 m and that they are related to the Weierstrassian epsilons of §5e 

only in the sense that they're created by a similar 'there exists ... such 
that'-type definition-e.g., the first ordinal number k such that ul = k is 
designated 'epsilon O' or 'E0'. 
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back. There are, in fact, a oo of different order-types for any 
infinite set; and what Cantor proves117 is that the set of possi
ble order-types for a denumerably infinite set is itself non

oenumerable. This means that there's yet another distinct 
way to generate an infinite hierarchy of infinite sets-if S is 
some denumerably infinite set, then Z is the nondenumer
ably infinite set of possible order-types of S, and Z' will be 
the set of possible order-types of Z, and ... , and away we 
go. (Actually, to call the different processes for deriving oo

hierarchies 'distinct' is a little misleading, because in truth 
they're related in all kinds of ways. The math of these rela
tions is beyond our technical scope here, but you can get at 
least some notion of the connections from the technical defi
nition Cantor gives of set Z (keeping in mind that 'number 
class' really refers to sets of ordinals), viz.: "The second num
ber class Z(tii;0) is the entirety {a} of all the order-types a of 
well-ordered sets of the cardinality tii;0• ") 

It doesn't have to get that deep, though. Leaving transfinite 
ordinals like w out of it, we can still see a marked and surely 
not coincidental similarity among ( 1) c as the set of all real 
numbers (v. ~0's rationals); (2) ~ 1 as the Power Set of ~0, i.e. 
as i' .. o; (3) Z as the set of all order-types of til;0• The real prob
lem is that Cantor can't prove a certain crucial connection 
between these three identities. You'll recall from a couple 
pages back that Cantor's original C.H. is that (1) and (2) are 
the same, that c = i'.,o = ~1 , and that there's no kind of 
intermediate-size oo between ~o and c. We are now set up to 
understand at least roughly how relation (3) is involved here. 
In the later §s of "Contributions ... Nurnbers"-through a 

117 m in § 15 of the prenominate "Contributions ... Numbers." 
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process of profoundly, unsummarizably technical reason
ing-Cantor is able to deduce two big things: (a) that there is 
no way that c is > i\ and (b) that if there does exist any infi
nite set that's greater than ~o but smaller than c, this set has 
got to be the nondenumerable set Z, a.k.a. the second num
ber class. It is big thing (b) that informs his main attack on 
the C.H., which consists in an attempt to show that relations 
(2) and (3) above are actually the same-that is, if Cantor 
can prove that Z = 2'\ then by (b) it will be provable that 
there exists no intermediate set between ~o and c, which will 
entail that c = tll1• It's specifically this Z = 2.-0that he couldn't 
prove. Ever. Despite years of unimaginable noodling. Whether 
it's what unhinged him or not is an unanswerable question, 
but it is true that his inability to prove the C.H. caused 
Cantor pain for the rest of his life; he considered it his great 
failure. This too, in hindsight, is sad, because professional 
mathematicians now know exactly why G. Cantor could nei
ther prove nor disprove the C.H. The reasons are deep and 
important and go corrosively to the root of axiomatic set 
theory's formal Consistency, in rather the same way that 
K. Godel's Incompleteness proofs deracinate all math as a 
formal system. Once again, the issues here can be only 
sketched or synopsized (although this time Godel is directly 
involved, so the whole thing is probably fleshed out in the 
Great Discoveries Series' Godel booklet). 

The Continuum Hypothesis and the aforementioned 
Axiom of Choice are the two great besetting problems of 
early set theory. Particularly respecting the former, it's 
important to distinguish between two different questions. 
One, which is metaphysical, is whether the C.H. is true or 
false. The other is whether the C.H. can be formally proved 
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or disproved from the axioms of standard set theory. 118 It's 
the second question that has been definitively answered, over 
a period of several decades, by K. Godel and P. Cohen, to wit: 

1938-Godel formally proves that the general form of the 
Continuum Hypothesis is Consistent with the axioms of 
ZF~i.e., that if the C.H. is treated as its own axiom and 
added to those of set theory no logical contradiction can 
possibly result. 

1963-ln one of those out-of-nowhere coups d'eclats that 
pop scholars and moviemakers love, a young Stanford prof. 
named Paul J. Cohen proves that the negation of the general 
C.H. can also be added to ZFS without contradiction. 119 

118 These two questions collapse into one only if either ( 1) formal set 
theory is an accurate map/mirror of the actual reality of CD and CD-grade 
sets, or (2) formal set theory is that actual reality, meaning that a given 
infinite set's 'existence' is all and only a matter of its logical compatibility 
with the theory's axioms. Please notice that these are just the questions 
about the metaphysical status of abstract entities that have afflicted math 
since the Greeks. 

119 m If set and proof theory weren't so incredibly esoteric, there 
would already have been a big-budget movie about Cohen's proof and the 
stories surrounding it, which math historians love and you can find in 
myriad sources. What's apposite for us are some eerie parallels with 
G. Cantor. For one thing, Cohen's background is in functional and har
monic analysis, areas that involve both differential equations and Fourier 
Series-meaning that he too comes to set theory from pure analysis. It gets 
eerier. Cohen's Ph.D. dissertation (U. of Chicago, 1958) is entitled Topics 
in the Theory of Uniqueness of Trigonometric Series. Plus, just as Cantor had 
invented entirely new, Diagonal and '<!>'-type set-theoretic proofs, so too 
Cohen invents a whole new proof-technique known as forcing, which is 
prohibitively high-tech but in some ways resembles a sort of Manichean 
math induction where you' re requiring the 'n = I' and 'f cases to take one 
of only two possible values .... Which may not make sense but isn't all 
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These two results together establish what's now known as 
the Independence of the Continuum Hypothesis, meaning that 
the C.H. occupies a place rather like the Parallel Axiom's120 

w/r/t the rest of Euclidean geometry: it can be neither proved 
nor disproved from set theory's standard axioms. 121 Plus 
you'll recall from the previous § that Godel and Cohen are 
able to derive pretty much the same results for the Axiom of 
Choice so vital to Cantor's various Diagonal proofs-Godel 
proving that the Axiom isn't disprovable in ZFSNNB, Cohen 
that it isn't provable in ZFS/VNB.122 There are, as was men
tioned, alternative axiom systems in which the C.H. and A.C. 
are provable/disprovable (e.g., Quinian set theory is set up in 

that vital here-what's Hollywoodesque is that Cohen gets turned on to set 
theory, invents and refines his proof-method, and proves the C.H.'s Inde
pendence all within a single year. 

120 M Q.v. §§ Id and 5b. 
121 This kind oflndependence (which can also be called Undecidability) 

is a big deal indeed. For one thing, it demonstrates that Godel's Incom
pleteness results (as well as A. Church's 1936 proof that 1st-order predicate 
logic is also Undecidable) are not just describing theoretical possibilities, 
that there really are true and significant theorems in math that can't be 
proved/disproved. Which in tum means that even a maximally abstract, 
general, wholly formal mathematics is not going to be able to repre
sent (or, depending on your metaphysical convictions, contain) all real
world mathematical truths. It's this shattering of the belief that 100% 
abstraction = 100% truth that pure math has still not recovered from
nor is it yet even clear what 'recovery' here would mean. 

122 m Plus, in yet another '63 proof, Cohen was able to show that even 
if the Axiom of Choice is added to the other axioms of ZFS, the 
general-form Continuum Hypothesis still isn't provable-which estab
lishes that the A.C. and C.H. are also Independent of each other, which 
again knocked the socks off the math world. 
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such a way that the Axiom of Choice is prima fade contradic
tory), although many of these Consistency-enhanced systems 
use 'set' in ways that are awfully different from Cantor et al.'s 
original definitions. 

The Continuum Hypothesis remains alive in other ways. It 
is, for instance, the motive cause behind several different the
oretical axiomatizations and extensions of set-theoretic mod
els in which the C.H. and various equivalents are assumed 123 

to be proved or disproved. These speculative systems are 
among the most hyperabstract constructs in modern math, 
involving rarefied terms like 'Cantorian' v. '1st-Order Uni
verses,' 'constructible' v. 'nonconstructible sets,' 'measurable 
cardinals,' 'inaccessible ordinals,' 'transfinite recursion,' 
'supercompletion,' and many others that are fun to say even 
if one has no clear idea what they're supposed to denote.124 

By way of closure, the more important thing for us to consider is 

how the C.H.'s unprovability bears on the other big question
whether the Hypothesis is in fact true. There are, not surpris
ingly, n different possible views on this. One kind of Formalist 
take is that various axiomatizations have various strengths and 
weaknesses, that the C.H. will be provable/disprovable in some 
and Undecidable in others, and that which system you adopt 
will depend on what your particular purpose is. Another, 

121 Here 'assumed' = in a speculative, what-if way. (M Factoid regard

ing the same clause's 'various equivalents': W. Sierpinski's 1934 Hypothese 

du Continu lists over 80 mathematical propositions that either equal or 
reduce to the general-form C.H.) 

124 m A good deal of contemporary set theory seems to involve argu
ing about what these theoretical terms mean and just when and why they 
do (=mean what they mean, if anything (and, if not anything, then what 
that nothing might mean (and so on))). 
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more strictly Hilbertian response will be that 'true' in this 
context can't really mean anything except 'provable in ZFS,' 
and thus that the C.H.'s logical Independence from ZFS 
means it's literally neither true nor false. 125 A pure Intuition
ist is apt to see the whole mess of paradox and unprovability 
in set theory as the natural consequence of allowing fuzzy 
and unconstructive concepts like sets, subsets, ordinals, and 
of course actual-type oo into math. 126 

But it is the mathematical Platonists (sometimes a.k.a. 
Realists, Cantorians, and/or Transfinitists) who are most 
upset by the C.H.'s Undecidability-which is interesting, 
since the two most famous modern Platonists are G. Cantor 
and K. Godel, who together are at least two-thirds responsi
ble for the whole nonplus. The Platonic position here is 
nicely summarized by Godel, writing about his own and 
Cohen's proofs of the C.H.'s Independence: 

Only someone who (like the Intuitionist) denies that the 
concepts and axioms of classical set theory have any mean
ing could be satisfied with such a solution, not someone 
who believes them to describe some well-determined real
ity. For in reality Cantor's conjecture must be either true 
or false, and its undecidability from the axioms as known 

125 M Again, you can see how this Forrna1ist view a1so incorporates ele

ments of Intuitionism, the most obvious of which is the willingness to bag 

LEM. 
126 IYI L. E. J. Brouwer's pronouncement on the whole Consistency-v.

Undecidability thing in set theory is the very Aristotelian-sounding "Noth

ing of rnathematica1 value will be attained in this manner; a false theory 

which is not stopped by a contradiction is nonetheless false, just as a crimi

na1 policy unchecked by a reprimanding court is nonetheless criminal." 
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today can only mean that these axioms do not contain a 
complete description of reality. 

305 

That is, for a mathematical Platonist, what the C.H. proofs 
really show is that set theory needs to find a better set of core 
axioms than classical ZFS, or at least it will need to add some 
further postulates that are-like the Axiom of Choice-both 
"self-evident" and Consistent with classical axioms. If you're 
interested, Godel's own personal view was that the Contin
uum Hypothesis is false, that there are actually a whole oo of 
Zeno-type oos nested between ~o and c, and that sooner or 
later a principle would be found that proved this. As of now 
no such principle's ever been found. Godel and Cantor both 
died in confinement, 127

'
128 bequeathing a world with no finite 

circumference. One that spins, now, in a new kind of all
formal Void. Mathematics continues to get out of bed. 

127 M Hilbert didn't go out easy either. Brouwer and Russell, on the other 

hand, both ended up living so long they practically had to be dispatched with 

clubs. 
128 m As of this writing, P. J. Cohen is the Marjorie Mhoon Fair Pro

fessor of Quantitative Science at Stanford. 
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